首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Mouse Phenome Project   总被引:9,自引:0,他引:9  
Bogue MA  Grubb SC 《Genetica》2004,122(1):71-74
The laboratory mouse is the organism of choice for many studies in biology and medicine. Reliable phenotypic data are essential for the full utility of genotypic information emerging from efforts to sequence human and mouse genomes. The Mouse Phenome Project has been organized to help accomplish this task by establishing a collection of baseline phenotypic data on commonly used and genetically diverse inbred mouse strains and making this information publicly available through a web-accessible database. The Mouse Phenome Database (MPD) is being developed to manage these data and to provide researchers with tools for exploring both raw phenotypic data and comparative summary analyses. The MPD serves as a repository for detailed protocols and raw data. This resource enables investigators to identify appropriate strains for (1) physiological testing, (2) drug discovery, (3) toxicology studies, (4) mutagenesis, (5) modeling human diseases, (6) QTL analyses and identification of new genes and (7) unraveling the influence of environment on genotype.  相似文献   

2.
3.
4.
5.
Disease networks are increasingly explored as a complement to networks centered around interactions between genes and proteins. The quality of disease networks is heavily dependent on the amount and quality of phenotype information in phenotype databases of human genetic diseases. We explored which aspects of phenotype database architecture and content best reflect the underlying biology of disease. We used the OMIM-based HPO, Orphanet, and POSSUM phenotype databases for this purpose and devised a biological coherence score based on the sharing of gene ontology annotation to investigate the degree to which phenotype similarity in these databases reflects related pathobiology. Our analyses support the notion that a fine-grained phenotype ontology enhances the accuracy of phenome representation. In addition, we find that the OMIM database that is most used by the human genetics community is heavily underannotated. We show that this problem can easily be overcome by simply adding data available in the POSSUM database to improve OMIM phenotype representations in the HPO. Also, we find that the use of feature frequency estimates—currently implemented only in the Orphanet database—significantly improves the quality of the phenome representation. Our data suggest that there is much to be gained by improving human phenome databases and that some of the measures needed to achieve this are relatively easy to implement. More generally, we propose that curation and more systematic annotation of human phenome databases can greatly improve the power of the phenotype for genetic disease analysis.  相似文献   

6.
7.
8.
9.
10.
C. L. Peichel  C. M. Abbott    T. F. Vogt 《Genetics》1996,144(4):1757-1767
The mouse Ulnaless locus is a semidominant mutation which displays defects in patterning along the proximal-distal and anterior-posterior axes of all four limbs. The first Ulnaless homozygotes have been generated, and they display a similar, though slightly more severe, limb phenotype than the heterozygotes. To create a refined genetic map of the Ulnaless region using molecular markers, four backcrosses segregating Ulnaless were established. A 0.4-cM interval containing the Ulnaless locus has been defined on mouse chromosome 2, which has identified Ulnaless as a possible allele of a Hoxd cluster gene(s). With this genetic map as a framework, a physical map of the Ulnaless region has been completed. Yeast artificial chromosomes covering this region have been isolated and ordered into a 2 Mb contig. Therefore, the region that must contain the Ulnaless locus has been defined and cloned, which will be invaluable for the identification of the molecular nature of the Ulnaless mutation.  相似文献   

11.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects.  相似文献   

12.
Keeping mammalian gastrointestinal (GI) tract communities in balance is crucial for host health maintenance. However, our understanding of microbial communities in the GI tract is still very limited. In this study, samples taken from the GI tracts of C57BL/6 mice were subjected to 16S rRNA gene sequence-based analysis to examine the characteristic bacterial communities along the mouse GI tract, including those present in the stomach, duodenum, jejunum, ileum, cecum, colon and feces. Further analyses of the 283,234 valid sequences obtained from pyrosequencing revealed that the gastric, duodenal, large intestinal and fecal samples had higher phylogenetic diversity than the jejunum and ileum samples did. The microbial communities found in the small intestine and stomach were different from those seen in the large intestine and fecal samples. A greater proportion of Lactobacillaceae were found in the stomach and small intestine, while a larger proportion of anaerobes such as Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae were found in the large intestine and feces. In addition, inter-mouse variations of microbiota were observed between the large intestinal and fecal samples, which were much smaller than those between the gastric and small intestinal samples. As far as we can ascertain, ours is the first study to systematically characterize bacterial communities from the GI tracts of C57BL/6 mice.  相似文献   

13.
Intracranial stimulation was used as a reinforcer to conditionfighting in paired rats. Stimulation for an implanted animalwas made contingent upon responses which successively approximatedthose typical of attack. A stable pattern of aggression developed,the maintenance of which was possible on intermittent reinforcementschedules although at depressed frequencies. An implanted ratalso readily initiated contact with a cat and made consistent,aggressive approaches toward a squirrel monkey. The aggressionobserved appeared to be a function of operant reinforcementsince extinction occurred when the intracranial stimulationcontingency was removed.  相似文献   

14.
15.
We have isolated and examined the gene for the heart isoform of cytochromecoxidase subunit VIIa (COX VIIa-H) in mouse, an isoform gene previously thought to be lacking in rodents. Interspecies amino acid comparisons indicate that mouse COX VIIa-H protein displays 82.5 and 70.9% identity with the bovine and human heart isoforms of COX VIIa, but only 53.7% identity with the paralogous mouse liver isoform (COX VIIa-L). Expression in adult mouse tissues is limited to heart and skeletal muscle, as found in other species. In the early mouse embryo,Cox7alwas the exclusive isoform expressed andCox7ahmRNA was not detectable until day 17postcoitum.That the mouseCox7ahgene characterized in this study is orthologous to the humanCOX7AHgene was also suggested by its mapping to mouse chromosome 7, to a conserved region syntenic with the human chromosome location ofCOX7AH,19q13.1. As a result, all three COX heart isoform genes in mouse group to chromosome 7. Interestingly, mapping of the mouseCox7alto chromosome 9 suggests a new syntenic region between the mouse and the human genomes.  相似文献   

16.

Background

L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology.

Methods

We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses.

Principal Findings

We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology.

Conclusion

We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice.  相似文献   

17.

Background  

Capping protein (CP), a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform.  相似文献   

18.
19.
Application of the Ovarian Teratoma Mapping Method in the Mouse   总被引:7,自引:3,他引:7       下载免费PDF全文
Murine ovarian teratomas were used to determine recombination percentages for gene-gene and centromere-gene intervals. Data were obtained utilizing a recombinant inbred strain, LTXBJ, and a number of newly developed LT/SvEi congenic strains.--Centromere-gene recombination was measured at 11.3 +/- 1.2% for the centromere of chromosome 7 - Gpi-1 interval and 15.8 +/- 2.4% for the centromere of chromosome 14 - Np-1 interval using the ovarian teratoma method. The centromere - Np-1 interval was measured at 26.5 +/- 3.6% using a standard backcross involving the Rb6Bnr Robertsonian translocation as a centromere marker.--To assess the accuracy of the ovarian teratoma mapping method, we compared the recombination frequency obtained for the Mpi-1-Mod-1 interval on chromosome 9 using the ovarian teratoma method to that obtained using a standard backcross. The recombination percentage was 22.9 +/- 5.4 using the ovarian teratoma method and 18.6 +/- 3.3 using the backcross method, indicating that the two methods produce equivalent estimates of recombination. In addition, for centromere-gene intervals known to be more than 30 cM in length, the ovarian teratoma method was consistent with classical recombination methods, yielding high recombination percentages. We conclude from these results that the ovarian teratoma mapping method is a reliable method for estimating recombination frequencies and the most accurate method available for estimating centromere-gene recombination frequency in the mouse.  相似文献   

20.
The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (Vm), calcium transients (CaT), and other parameters. Excitation-contraction coupling is characterized by action potential and intracellular calcium dynamics; therefore, it is critically important to map both Vm and CaT simultaneously from the same location on the heart1-4. Simultaneous optical mapping from Langendorff perfused mouse hearts has the potential to elucidate mechanisms underlying heart failure, arrhythmias, metabolic disease, and other heart diseases. Visualization of activation, conduction velocity, action potential duration, and other parameters at a myriad of sites cannot be achieved from cellular level investigation but is well solved by optical mapping1,5,6. In this paper we present the instrumentation setup and experimental conditions for simultaneous optical mapping of Vm and CaT in mouse hearts with high spatio-temporal resolution using state-of-the-art CMOS imaging technology. Consistent optical recordings obtained with this method illustrate that simultaneous optical mapping of Langendorff perfused mouse hearts is both feasible and reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号