首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Tar DNA Binding Protein-43 (TDP-43) is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein-RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway.  相似文献   

3.

Background

TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 expression and formation of C-terminal TDP-43 fragmentation and accumulation in the cytoplasm. Recent studies have shown that TDP-43 can accumulate in RNA stress granules (SGs) in response to cell stresses and this could be associated with subsequent formation of TDP-43 ubiquinated protein aggregates. However, the initial mechanisms controlling endogenous TDP-43 accumulation in SGs during chronic disease are not understood. In this study we investigated the mechanism of TDP-43 processing and accumulation in SGs in SH-SY5Y neuronal-like cells exposed to chronic oxidative stress. Cell cultures were treated overnight with the mitochondrial inhibitor paraquat and examined for TDP-43 and SG processing.

Results

We found that mild stress induced by paraquat led to formation of TDP-43 and HuR-positive SGs, a proportion of which were ubiquitinated. The co-localization of TDP-43 with SGs could be fully prevented by inhibition of c-Jun N-terminal kinase (JNK). JNK inhibition did not prevent formation of HuR-positive SGs and did not prevent diffuse TDP-43 accumulation in the cytosol. In contrast, ERK or p38 inhibition prevented formation of both TDP-43 and HuR-positive SGs. JNK inhibition also inhibited TDP-43 SG localization in cells acutely treated with sodium arsenite and reduced the number of aggregates per cell in cultures transfected with C-terminal TDP-43 162-414 and 219-414 constructs.

Conclusions

Our studies are the first to demonstrate a critical role for kinase control of TDP-43 accumulation in SGs and may have important implications for development of treatments for FTD and ALS, targeting cell signal pathway control of TDP-43 aggregation.  相似文献   

4.
TAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates. Thus, A90V may be a genetic risk factor for FTLD/ALS because it predisposes nuclear TDP-43 to redistribute to the cytoplasm and form pathological aggregates.  相似文献   

5.
Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis (ALS), while wild-type TDP-43 is a pathological hallmark of patients with sporadic ALS and frontotemporal lobar degeneration (FTLD). Various in vitro and in vivo studies have also demonstrated toxicity of both mutant and wild-type TDP-43 to neuronal cells. To study the potential additional toxicity incurred by mutant TDP-43 in vivo, we generated mutant human TDP-43 (p.M337V) transgenic mouse lines driven by the Thy-1.2 promoter (Mt-TAR) and compared them in the same experimental setting to the disease phenotype observed in wild-type TDP-43 transgenic lines (Wt-TAR) expressing comparable TDP-43 levels. Overexpression of mutant TDP-43 leads to a worsened dose-dependent disease phenotype in terms of motor dysfunction, neurodegeneration, gliosis, and development of ubiquitin and phosphorylated TDP-43 pathology. Furthermore, we show that cellular aggregate formation or accumulation of TDP-43 C-terminal fragments (CTFs) are not primarily responsible for development of the observed disease phenotype in both mutant and wild-type TDP-43 mice.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, motor neuron disease with no effective long-term treatment options. Recently, TDP-43 has been identified as a key protein in the pathogenesis of some cases of ALS. Although the role of TDP-43 in motor neuron degeneration is not yet known, TDP-43 has been shown to accumulate in RNA stress granules (SGs) in cell models and in spinal cord tissue from ALS patients. The SG association may be an early pathological change to TDP-43 metabolism and as such a potential target for therapeutic intervention. Accumulation of TDP-43 in SGs induced by inhibition of mitochondrial activity can be inhibited by modulation of cellular kinase activity. We have also found that treatment of cells and animal models of neurodegeneration, including an ALS model, with bioavailable bis(thiosemicarbazonato)copper(II) complexes (Cu(II)(btsc)s) can modulate kinase activity and induce neuroprotective effects. In this study we examined the effect of diacetylbis(-methylthiosemicarbazonato)copper(II) (Cu(II)(atsm)) and glyoxalbis(-methylthiosemicarbazonato)copper(II) (Cu(II)(gtsm)) on TDP-43-positive SGs induced in SH-SY5Y cells in culture. We found that the Cu(II)(btsc)s blocked formation of TDP-43-and human antigen R (HuR)-positive SGs induced by paraquat. The Cu(II)(btsc)s protected neurons from paraquat-mediated cell death. These effects were associated with inhibition of ERK phosphorylation. Co-treatment of cultures with either Cu(II)(atsm) or an ERK inhibitor, PD98059 both prevented ERK activation and blocked formation of TDP-43-and HuR-positive SGs. Cu(II)(atsm) treatment or ERK inhibition also prevented abnormal ubiquitin accumulation in paraquat-treated cells suggesting a link between prolonged ERK activation and abnormal ubiquitin metabolism in paraquat stress and inhibition by Cu. Moreover, Cu(II)(atsm) reduced accumulation of C-terminal (219-414) TDP-43 in transfected SH-SY5Y cells. These results demonstrate that Cu(II)(btsc) complexes could potentially be developed as a neuroprotective agent to modulate neuronal kinase function and inhibit TDP-43 aggregation. Further studies in TDP-43 animal models are warranted.  相似文献   

7.
8.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   

9.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   

10.
Abnormal aggregates of transactive response DNA-binding protein-43 (TDP-43) and its hyperphosphorylated and N-terminal truncated C-terminal fragments (CTFs) are deposited as major components of ubiquitinated inclusions in most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). The mechanism underlying the contribution of TDP-43 to the pathogenesis of these neurodegenerative diseases remains unknown. In this study, we found that a 2-5-fold increase in TDP-43 expression over the endogenous level induced death of NSC34 motor neuronal cells and primary cortical neurons. TDP-43-induced death is associated with up-regulation of Bim expression and down-regulation of Bcl-xL expression. siRNA-mediated reduction of Bim expression attenuates TDP-43-induced death. Accumulated evidence indicates that caspases are activated in neurons of ALS and FTLD-U patients, and activated caspase-mediated cleavage of TDP-43 generates CTFs of TDP-43. Here, we further found that the ER (endoplasmic reticulum) stress- or staurosporine-mediated activation of caspases leads to cleavage of TDP-43 at Asp(89) and Asp(169), generating CTF35 (TDP-43-(90-414)) and CTF27 (TDP-43-(170-414)) in cultured neuronal cells. In contrast to TDP-43, CTF27 is unable to induce death while it forms aggregates. CTF35 was weaker than full-length TDP-43 in inducing death. A cleavage-resistant mutant of TDP-43 (TDP-43-D89E/D169E) showed stronger death-inducing activity than wild-type TDP-43. These results suggest that disease-related activation of caspases may attenuate TDP-43-induced toxicity by promoting TDP-43 cleavage.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease. To date, there is no any effective pharmacological treatment for improving patients'' symptoms and quality of life. Rapidly emerging evidence suggests that C-terminal fragments (CTFs) of TAR DNA-binding protein of 43 kDa (TDP-43), including TDP-35 and TDP-25, may play an important role in ALS pathogenesis. Valproate (VPA), a widely used antiepileptic drug, has neuroprotective effects on neurodegenerative disorders. As for ALS, preclinical studies also provide encouraging evidence for multiple beneficial effects in ALS mouse models. However, the potential molecular mechanisms have not been explored. Here, we show protective effects of VPA against TDP-43 CTFs-mediated neuronal toxicity and its underlying mechanisms in vitro. Remarkably, TDP-43 CTFs induced neuronal damage via endoplastic reticulum (ER) stress-mediated apoptosis. Furthermore, autophagic self-defense system was activated to reduce TDP-43 CTFs-induced neuronal death. Finally, VPA attenuated TDP-25-induced neuronal toxicity via suppressing ER stress-mediated apoptosis and enhancing autophagy. Taken together, these results demonstrate that VPA exerts neuroprotective effects against TDP-43 CTFs-induced neuronal damage. Thus, we provide new molecular evidence for VPA treatment in patients with ALS and other TDP-43 proteinopathies.  相似文献   

12.
TAR DNA-binding protein (TDP-43) is a major component of most ubiquitin-positive neuronal and glial inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A number of missense mutations in the TARDBP gene have been identified in patients with familial and sporadic ALS, as well as familial FTLD with ALS. In the diseased states, TDP-43 proteins exhibit characteristic alterations, including truncation, abnormal phosphorylation, and altered subcellular distribution. However, the mechanisms by which TDP-43 mutations induce neurodegeneration remain unclear at present. In the current study, we analyzed protein turnover and subcellular distribution of wild-type TDP-43 and two disease-associated mutants (G298S and A382T) in human neuroblastoma SH-SY5Y cells stably expressing TDP-43 with a C-terminal tag. Cycloheximide chase experiments revealed more rapid turnover of TDP-43 mutant proteins than their wild-type counterpart. The decrease in the TDP-43 level after cycloheximide treatment was partially recovered upon co-treatment with the proteasome inhibitor, epoxomicin, but not the lysosomotropic agent, chloroquine, suggesting involvement of the proteasomal pathway in TDP-43 degradation. Analysis of the subcellular distribution of TDP-43 revealed predominant localization in the nuclear fraction, whereas the relative level in the cytoplasm remained unaltered in cells expressing either mutant protein, compared with wild-type protein. Our results suggest that higher turnover of disease-associated mutant TDP-43 proteins through the ubiquitin proteasome system is pathogenetically relevant and highlight the significance of proteolysis in the pathogenetic mechanism of TDP-43 proteinopathy.  相似文献   

13.
14.
The main hallmark of many forms of familiar and sporadic amyotrophic lateral sclerosis (ALS) is a reduction in nuclear TDP-43 protein and its inclusion in cytoplasmic aggregates in motor neurons. In order to understand which cellular and molecular mechanisms underlie the mislocalization of TDP-43, we examined human skin fibroblasts from two individuals with familial ALS, both with mutations in TDP-43, and two individuals with sporadic ALS, both without TDP-43 mutations or mutations in other ALS related genes. We found that all ALS fibroblasts had a partially cytoplasmic localization of TDP-43 and had reduced cell metabolism as compared to fibroblasts from apparently healthy individuals. ALS fibroblasts showed an increase in global protein synthesis and an increase in 4E-BP1 and rpS6 phosphorylation, which is indicative of mTORC1 activity. We also observed a decrease in glutathione (GSH), which suggests that oxidative stress is elevated in ALS. ERK1/2 activity regulated the extent of oxidative stress and the localization of TDP-43 in the cytoplasm in all ALS fibroblasts. Lastly, ALS fibroblasts showed reduced stress granule formation in response to H2O2 stress. In conclusion, these findings identify specific cellular and molecular defects in ALS fibroblasts, thus providing insight into potential mechanisms that may also occur in degenerating motor neurons.  相似文献   

15.
TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 and accumulation of the protein in the cytosol as ubiquitinated protein aggregates. These protein aggregates may have an important role in subsequent neuronal degeneration in motor neuron disease, frontotemporal dementia and potentially other neurodegenerative diseases. Although the cellular mechanisms driving the abnormal accumulation of TDP-43 are not understood, recent studies have shown that an early change to TDP-43 metabolism in disease may be accumulation in cytosolic RNA stress granules (SGs). However, it is unclear whether the TDP-43 in these SGs progresses to become irreversible protein aggregates as observed in patients. We have shown recently that paraquat-treated cells are a useful model for examining TDP-43 SG localization. In this study, we used the paraquat model to examine if endogenous TDP-43 in SGs can progress to more stable protein aggregates. We found that after treatment of HeLa cells overnight with paraquat, TDP-43 co-localized to SGs together with the ubiquitous SG marker, human antigen R (HuR). However, after a further incubation in paraquat-free, conditioned medium for 6h, HuR-positive SGs were rarely detected yet TDP-43 positive aggregates remained present. The majority of these TDP-43 aggregates were positive for ubiquitin. Further evidence for persistence of TDP-43 aggregates was obtained by treating cultures with cycloheximide after paraquat treatment. Cycloheximide abolished nearly all cytosolic HuR aggregation (SGs) but large TDP-43-positive aggregates remained. Finally, we showed that addition of ERK and JNK inhibitors together with paraquat blocked TDP-43-positive SG formation, while treatment with inhibitors after 24h paraquat exposure failed to reverse the TDP-43 accumulation. This failure was most likely due to the addition of inhibitors after maximal activation of the kinases at 4h post-paraquat treatment. These findings provide strong evidence that once endogenous TDP-43 accumulates in SGs, it has the potential to progress to stable protein aggregates as observed in neurons in TDP-43 proteinopathies. This may provide a therapeutic opportunity to inhibit the transition of TDP-43 from SG protein to aggregate.  相似文献   

16.
ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.  相似文献   

17.
18.
Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43) is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal lobe dementia (FTLD). These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation) induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.  相似文献   

19.
随着全球老龄化人口的急剧增加,神经退行性变已经成为危害公共健康的主要疾病.在神经退行性疾病(肌萎缩侧索硬化症(ALS)、额颞叶变性病(FTLD)和阿尔茨海默病(AD)等)患者脑组织中均能观察到蛋白质聚集形成的包涵体,其中TAR DNA结合蛋白43 (TDP-43)是主要成分之一.目前已发现多个TDP-43基因突变与家族...  相似文献   

20.
The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号