首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.  相似文献   

2.
Understanding animal movement decisions that involve migration is critical for evaluating population connectivity, and thus persistence. Recent work on sharks has shown that often only a portion of the adult population will undertake migrations, while the rest may be resident in an area for long periods. Defining the extent to which adult sharks use specific habitats and their migratory behaviour is essential for assessing their risk of exposure to threats such as fishing and habitat degradation. The present study used acoustic telemetry to examine residency patterns and migratory behaviour of adult bull sharks (Carcharhinus leucas) along the East coast of Australia. Fifty-six VR2W acoustic receivers were used to monitor the movements of 33 bull sharks in the central Great Barrier Reef (GBR). Both males and females were detected year-round, but their abundance and residency peaked between September and December across years (2012–2014). High individual variability in reef use patterns was apparent, with some individuals leaving the array for long periods, whereas others (36%) exhibited medium (0.20–0.40) or high residency (> 0.50). A large portion of the population (51%) undertook migrations of up to 1,400 km to other coral reefs and/or inshore coastal habitats in Queensland and New South Wales. Most of these individuals (76%) were mature females, and the timing of migrations coincided with the austral summer (Dec-Feb). All migrating individuals (except one) returned to the central GBR, highlighting its importance as a potential foraging ground. Our findings suggest that adult bull sharks appear to be highly dependent on coral reef resources and provide evidence of partial migration, where only a portion of the female population undertook seasonal migrations potentially to give birth. Given that estuarine habitats face constant anthropogenic pressures, understanding partial migration and habitat connectivity of large coastal predators should be a priority for their management.  相似文献   

3.
Spatial structuring and segregation by sex and size is considered to be an intrinsic attribute of shark populations. These spatial patterns remain poorly understood, particularly for oceanic species such as blue shark (Prionace glauca), despite its importance for the management and conservation of this highly migratory species. This study presents the results of a long-term electronic tagging experiment to investigate the migratory patterns of blue shark, to elucidate how these patterns change across its life history and to assess the existence of a nursery area in the central North Atlantic. Blue sharks belonging to different life stages (n = 34) were tracked for periods up to 952 days during which they moved extensively (up to an estimated 28.139 km), occupying large parts of the oceanic basin. Notwithstanding a large individual variability, there were pronounced differences in movements and space use across the species'' life history. The study provides strong evidence for the existence of a discrete central North Atlantic nursery, where juveniles can reside for up to at least 2 years. In contrast with previously described nurseries of coastal and semi-pelagic sharks, this oceanic nursery is comparatively vast and open suggesting that shelter from predators is not its main function. Subsequently, male and female blue sharks spatially segregate. Females engage in seasonal latitudinal migrations until approaching maturity, when they undergo an ontogenic habitat shift towards tropical latitudes. In contrast, juvenile males generally expanded their range southward and apparently displayed a higher degree of behavioural polymorphism. These results provide important insights into the spatial ecology of pelagic sharks, with implications for the sustainable management of this heavily exploited shark, especially in the central North Atlantic where the presence of a nursery and the seasonal overlap and alternation of different life stages coincides with a high fishing mortality.  相似文献   

4.
5.
Spatial separation within predator communities can arise via territoriality but also from competitive interactions among and within species. However, linking competitive interactions to predator distribution patterns is difficult and theoretical models predict different habitat selection patterns dependent on habitat quality and how competition manifests itself. While models generally consider competitors to be either equal in ability, or for one phenotype to have a fixed advantage over the other, few studies consider that an animal may only have a competitive advantage in specific habitats. We used  10 years of telemetry data, habitat surveys and behavioral experiments, to show spatial partitioning between and within two species of reef shark (grey reef Carcharhinus amblyrhinchos and blacktip reef sharks C. melanopterus) at an unfished Pacific atoll. Within a species, sharks remained within small ‘sub‐habitats’ with very few movements of individuals between sub‐habitats, which previous models have suggested could be caused by intra‐specific competition. Blacktip reef sharks were more broadly distributed across habitat types but a greater proportion used lagoon and backreef habitats, while grey reef sharks preferred forereef habitats. Grey reef sharks at a nearby atoll where blacktip reef sharks are absent, were distributed more broadly between habitat types than when both species were present. A series of individual‐based models predict that habitat separation would only arise if there are competitive interactions between species that are habitat‐specific, with grey reefs having a competitive advantage on the forereefs and blacktips in the lagoons and backreef. We provide compelling evidence that competition helps drive distribution patterns and spatial separation of a marine predator community, and highlight that competitive advantages may not be constant but rather dependent on habitats.  相似文献   

6.

Reef sharks may be ecologically redundant, such that other mesopredatory fishes compensate for their functions when they decline in number, preventing trophic cascades. Oral jaw gape, hereafter referred to as gape, determines maximum prey size in many piscivores and therefore affects the size structure of prey assemblages. Here, we examine whether gape and maximum prey size differ between five species of reef shark and 21 species of teleost (n?=?754) using data collected from 38 reefs in the Indo-Pacific. Sharks displayed relatively small gape dimensions compared to most teleost species and, at smaller sizes, the giant trevally Caranx ignobilis and other teleosts may be able to consume larger prey than similar-sized sharks. However, ecological redundancy between reef sharks and teleosts appears to decline at larger sizes, such that the grey reef shark Carcharhinus amblyrhynchos, for example, may be capable of consuming larger prey than any other reef predator at its largest sizes, regardless of prey body shape. Moreover, sharks may be able to consume proportionally larger prey as they grow, in contrast to reef teleosts, which may largely be limited by their gapes to ever-smaller prey as a proportion of their body size. Our results also suggest that reef sharks may be unable to swallow whole prey that are >?36% of their length, consistent with gut-content studies. Conservation of reef ecological function may therefore depend not only on the protection of sharks but also particular size classes and key components of the mesopredatory guild.

  相似文献   

7.
Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.  相似文献   

8.
Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.  相似文献   

9.
Fisheries exploitation and habitat alteration are threatening lemon shark (Negaprion bevirostris) populations because they use nearshore regions as nursery sites. As such, there is a need for information on the spatial ecology of juvenile lemon sharks to identify critical habitats that require protection, as well as to understand their basic ecology. The purpose of this study was to determine the habitat preferences and movement patterns of juvenile lemon sharks along a sub-section of coastline characterized by coastal flats and tidal creeks of Eleuthera, The Bahamas. Eleven juvenile lemon sharks (766 ± 127 mm total length; mean±SD) were captured from various tidal creeks within the 23 km study area and were surgically implanted with acoustic transmitters. A series of 27 hydrophone receivers acted as a passive monitoring array to detect tagged individuals as they moved among habitats. Findings suggest that juvenile lemon sharks tagged in this study prefer shallow water habitats within tidal creeks, and typically display high site fidelity with occasional forays to alternate habitats or creeks. In fact, more than 90% of tagged lemon sharks had the greatest percentage of detections located at a receiver at or close to the location where they were tagged. There was no evidence of differences in diel or seasonal movement and habitat use. Knowledge gained from this study will be useful for directing future conservation and management strategies including coastal development plans and marine protected areas.  相似文献   

10.
Marine ecosystems are suffering severe depletion of apex predators worldwide; shark declines are principally due to conservative life-histories and fisheries overexploitation. On coral reefs, sharks are strongly interacting apex predators and play a key role in maintaining healthy reef ecosystems. Despite increasing fishing pressure, reef shark catches are rarely subject to specific limits, with management approaches typically depending upon no-take marine reserves to maintain populations. Here, we reveal that this approach is failing by documenting an ongoing collapse in two of the most abundant reef shark species on the Great Barrier Reef (Australia). We find an order of magnitude fewer sharks on fished reefs compared to no-entry management zones that encompass only 1% of reefs. No-take zones, which are more difficult to enforce than no-entry zones, offer almost no protection for shark populations. Population viability models of whitetip and gray reef sharks project ongoing steep declines in abundance of 7% and 17% per annum, respectively. These findings indicate that current management of no-take areas is inadequate for protecting reef sharks, even in one of the world's most-well-managed reef ecosystems. Further steps are urgently required for protecting this critical functional group from ecological extinction.  相似文献   

11.
A review of past behavioral ultrasonic telemetry studies of sharks and rays is presented together with previously unpublished material on the behavior of the lemon shark, Negaprion brevirostris, around the Bimini Islands, Bahamas. The review, focusing on movement behaviors of 20 shark and three ray species, reveals that elasmobranchs exhibit a variety of temporal and spatial patterns in terms of rates-of-movement and vertical as well as horizontal migrations. The lack of an apparent pattern in a few species is probably attributable to the scarcity of tracking data. Movements are probably governed by several factors, some still not studied, but data show that food, water temperature, bottom type, and magnetic gradient play major roles in a shark's decision of where and when to swim. A few species exhibit differences in behavior between groups of sharks within the same geographical area. This interesting finding warrants further research to evaluate the causes of these apparent differences and whether these groups constitute different subpopulations of the same species. The lack of telemetry data on batoids and some orders of sharks must be addressed before we can gain a more comprehensive understanding of the behavior of elasmobranch fishes. Previously unpublished data from 47 smaller and 38 larger juvenile lemon sharks, collected over the decade 1988–1998, provide new results on movement patterns, habitat selection, activity rhythms, swimming speed, rate-of-movement, and homing behavior. From these results we conclude that the lemon shark is an active predator with a strong, apparently innate homing mechanism. This species shows ontogenetic differences in habitat selection and behavior, as well as differences in movements between groups of individuals within the same area. We suggest three hypotheses for future research on related topics that will help to understand the enigmatic behavior of sharks.  相似文献   

12.
From January 2017 - December 2019, 75 out of 850 (8.8 %) great hammerhead sharks from the Arabian Gulf had skin lesions of black irregular discolorations on the ventral surface of the head. The lesions consisted of pencil-like lineations often advancing forward by about 2 mm in back-and-forth looped scribbles often forming a relatively linear bands of about 5–7 cm wide. Similar lesions were also found in the blacktip reef shark from the same area within the same period, and consisted of straight to irregular black lines, extended indiscriminately across the skin of the sharks. Microscopic examination of the skin revealed the presence of dark-brown eggs exhibiting the spindle or ellipsoidal eggs characteristic of Huffmanela sp. The morphometrics of eggs from both hosts were similar (62.9–89.9 μm long and 29.3–56.1 μm wide). The eggshells were smooth with polar plugs protruding or not, with an abruptly truncated crown-like or shoulder-like collar surrounding the plug. The eggs were only found in the epidermal layer of the skin. Based on the unique morphometrics of the eggs, we report a new species, named: Huffmanela selachii n. sp.. This appears to be the first report of Huffmanela from either the great hammerhead shark or the blacktip reef shark, and the third reported Huffmanela in sharks from the Arabian Gulf. It is also one of few species reported from connecting waters of the greater Indian Ocean. This new finding contributes to our understanding of the diversity and ubiquity of Huffmanela sp. in marine creatures.  相似文献   

13.
Conservation of top predators has been emphasized as essential in an ecosystem due to their role in trophic chain regulation. Optimizing conservation strategies for these endangered marine top predators requires direct estimates of breeding patterns and connectivity as these are essential to understanding the population dynamics. There have been some attempts to investigate breeding patterns of reef sharks from litter reconstruction using molecular analyses. However, direct fine‐scale migrations of female sharks for parturition as well as connectivity at a medium scale like between islands remain mostly unknown. We used microsatellite DNA markers and a likelihood‐based parentage analysis to determine breeding patterns of female blacktip reef sharks in Moorea (Society Islands, French Polynesia). Most females gave birth at their home island but some migrated to specific nursery areas outside the area they are attached to, sometimes going to another island 50 km away across deep ocean. Our analysis also revealed that females migrated to the same nursery for every birthing event. Many offspring showed a high level of inbreeding indicating an overall reduced population size, restricted movements and dispersal, or specific mating behaviour. Females represent the vectors that transport the genes at nursery grounds, and their fidelity should thus define reproductive units. As females seem to be philopatric, males could be the ones dispersing genes between populations. These results highlight the need to conserve coastal zones where female reef sharks seem to exhibit philopatry during the breeding season.  相似文献   

14.
Body form can change across ontogeny, and can influence how animals of different sizes move and feed. Scaling data on live apex predatory sharks are rare and, therefore, we examined patterns of scaling in ontogenetic series of four sympatric shark species exhibiting a range of sizes, ecologies and life histories (tiger, bull, blacktip, and nurse shark). We evaluated 13 linear morphological variables and two areas (caudal and dorsal) that could influence both animal condition and locomotor performance. These measurements included dimensions of the dorsal, pectoral, and caudal fins, as well as several dimensions of body circumference, and of the head. For all four species, the body axis (eye‐to‐eye, lateral span, frontal span, proximal span) scaled close to isometry (expected slope of 1.0). The two largest sharks (tiger and bull sharks) also showed significant negative allometry for elements of the caudal fin. We found significant negative allometry in the lengths of the upper lobe of the caudal fin (caudal fin 1) and the overall height of the caudal fin (caudal fin 2) in tiger and bull sharks, with slopes ranging from about 0.60 to 0.73. Further, tiger sharks showed negative allometry in caudal fin area. These results suggest that in terms of overall body dimensions, small sharks are roughly geometrically similar to large sharks, at least within the species we examined. However, juvenile tiger (and to a lesser extent bull sharks) are notable in having proportionately larger caudal fins compared to adult sharks. As the caudal fin contributes to generating thrust during forward locomotion, this scaling implies differences among adult and juvenile sharks in locomotor ability. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 126–135.  相似文献   

15.
Grey reef sharks (Carcharhinus amblyrhynchos) are apex predators found on many Indo-Pacific coral reefs, but little is known about their movement patterns and habitat requirements. We used acoustic telemetry to determine movements and habitat use of these sharks at the isolated Rowley Shoals atolls, 250 km off the coast of north-western Australia. We equipped 12 male and 14 female sharks ranging from 0.79 to 1.69 m in total length with transmitters that were detected by an array of 11 strategically placed receivers on two atoll reefs. Over 26,000 detections were recorded over the 325 days of receiver deployment. No sharks were observed to move between reefs. Receivers on the outer slopes of reefs provided nearly all (99%) of the detections. We found no differences in general attendance parameters due to size, sex or reef, except for maximum period of detection where larger sharks were detected over a longer period than smaller sharks. Male and female sharks were often detected at separate receivers at the outer slope habitat of one reef, suggesting sexual segregation, but this pattern did not occur at the second reef where males and females were detected at similar frequencies. We identified two patterns of daily behaviour: (1) sharks were present at the reef both day and night or (2) sharks spent more time in attendance during day than at night. Fast Fourier transforms identified 24-h cycles of attendance at the reef and a secondary peak of attendance at 12 h for most sharks, although no individuals shared the same attendance patterns. Our study provides baseline data that can be used to optimise the minimum area and habitat requirements for conservation of these apex predators.  相似文献   

16.
Identifying critical habitat for highly mobile species such as sharks is difficult, but essential for effective management and conservation. In regions where baseline data are lacking, non‐traditional data sources have the potential to increase observational capacity for species distribution and habitat studies. In this study, a research and education organization conducted a 5‐year (2013–2018) survey of shark populations in the coastal waters of west‐central Florida, an area where a diverse shark assemblage has been observed but no formal population analyses have been conducted. The objectives of this study were to use boosted regression tree (BRT) modeling to quantify environmental factors impacting the distribution of the shark assemblage, create species distribution maps from the model outputs, and identify spatially explicit hot spots of high shark abundance. A total of 1036 sharks were captured, encompassing eleven species. Abundance hot spots for four species and for immature sharks (collectively) were most often located in areas designated as “No Internal Combustion Engine” zones and seagrass bottom cover, suggesting these environments may be fostering more diverse and abundant populations. The BRT models were fitted for immature sharks and five species where n > 100: the nurse shark (Ginglymostoma cirratum), blacktip shark (Carcharhinus limbatus), blacknose shark (C. acronotus), Atlantic sharpnose shark (Rhizoprionodon terraenovae), and bonnethead (Sphyrna tiburo). Capture data were paired with environmental variables: depth (m), sea surface temperature (°C), surface, middle, and bottom salinity (psu), dissolved oxygen (mg/L), and bottom type (seagrass, artificial reef, or sand). Depth, temperature, and bottom type were most frequently identified as predictors with the greatest marginal effect on shark distribution, underscoring the importance of nearshore seagrass and barrier island habitats to the shark assemblage in this region. This approach demonstrates the potential contribution of unconventional science to effective management and conservation of coastal sharks.  相似文献   

17.
Previous work on white sharks indicate the species show seasonally limited movement patters, at certain aggregation sites small areas may play vital roles in the life history of a large amount of the population. Acoustic telemetry was used to estimate habitat use of white sharks, Carcharodon carcharias, while aggregating at Mossel Bay, South Africa. Total range of all shark tracks combined accumulated 782 h and covered an area of 93.5 km2 however, within this range, sharks were found to highly utilise a core habitat (50 % Kernel, K50) of just 1.05 km2 over a reef system adjacent to a river mouth. Individual tracks revealed additional core habitats, some of which were previously undocumented and one adjacent to a commercial harbor. Much was found to be dependent on the size of the shark, with larger sharks (>400 cm) occupying smaller activity areas than subadult (300–399 cm) and juvenile (<300 cm) conspecifics, while Index of Reuse (IOR) and Index of Shared Space (IOSS) were both found to increase with shark size. Such results provide evidence that larger white sharks are more selective in habitat use, which indicates they have greater experience within aggregation sites. Furthermore, the focused nature of foraging means spatially restricted management strategies would offer a powerful tool to aid enforcement of current protective legislation for the white shark in similar environments of limited resources and capacity.  相似文献   

18.
White sharks (Carcharodon carcharias) are threatened apex predators and identification of their critical habitats and how these are used are essential to ensuring improved local and ultimately global white shark protection. In this study we investigated habitat use by white sharks in False Bay, South Africa, using acoustic telemetry. 56 sharks (39 female, 17 male), ranging in size from 1.7–5 m TL, were tagged with acoustic transmitters and monitored on an array of 30 receivers for 975 days. To investigate the effects of season, sex and size on habitat use we used a generalized linear mixed effects model. Tagged sharks were detected in the Bay in all months and across all years, but their use of the Bay varied significantly with the season and the sex of the shark. In autumn and winter males and females aggregated around the Cape fur seal colony at Seal Island, where they fed predominantly on young of the year seals. In spring and summer there was marked sexual segregation, with females frequenting the Inshore areas and males seldom being detected. The shift from the Island in autumn and winter to the Inshore region in spring and summer by females mirrors the seasonal peak in abundance of juvenile seals and of migratory teleost and elasmobranch species respectively. This study provides the first evidence of sexual segregation at a fine spatial scale and demonstrates that sexual segregation in white sharks is not restricted to adults, but is apparent for juveniles and sub-adults too. Overall, the results confirm False Bay as a critical area for white shark conservation as both sexes, across a range of sizes, frequent the Bay on an annual basis. The finding that female sharks aggregate in the Inshore regions when recreational use peaks highlights the need for ongoing shark-human conflict mitigation strategies.  相似文献   

19.
Establishing the ecological role of predators within an ecosystem is central to understanding community dynamics and is useful in designing effective management and conservation strategies. We analysed differences in the trophic ecology of four species of reef sharks (Carcharhinus melanopterus, Carcharhinus amblyrhynchos, Triaenodon obesus and Negaprion acutidens) at Ningaloo Reef, Western Australia, by analysing tissue stable isotopes (δ15N and δ13C). We also monitored animals using acoustic telemetry to determine long-term residency patterns in a bay at the southern end of the reef, Coral Bay. Overall, mean δ13C was similar among species, ranging between −10.9 and −11.8‰, suggesting a food-web dependency on coastal producers. Classification and regression tree analysis identified an effect of species on δ15N that separated C. amblyrhynchos and C. melanopterus from N. acutidens and T. obesus. For C. amblyrhynchos and C. melanopterus, animals were also divided by size classes, with smaller sharks having lower average δ15N than larger animals; this suggests that δ15N increases with size for these two species. Juvenile C. melanopterus, juvenile N. acutidens and adult T. obesus had trophic levels of 3.7, for juvenile C. amblyrhynchos and adult C. melanopterus it was 4, and adult C. amblyrhynchos had a value of 4.3. Trophic-level estimates for C. melanopterus and C. amblyrhynchos corroborate previous conclusions based on diet studies. We found no evidence for a difference in isotopic composition between resident and non-resident sharks. The lack of variation in isotopic composition was consistent with high mean residency of these species recorded using acoustic telemetry, which was 79% (±0.09 SE) of days monitored for T. obesus, followed by N. acutidens (57 ± 19.55%), C. amblyrhynchos (54 ± 13%) and C. melanopterus (33 ± 8.28%). High δ13C composition in reef sharks and long-term residency behaviour suggest that coastal marine reserves might provide effective conservation refuges for some species.  相似文献   

20.
Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号