首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For most eukaryotic organisms, including Saccharomyces cerevisiae, the rapid inhibition of protein synthesis forms part of a response to stress. In order to balance the changing conditions, precise stress-specific alterations to the cell's proteome are required. Therefore, in the background of a global down-regulation in protein synthesis, specific proteins are induced. Given the level of plasticity required to enable stress-specific alterations of this kind, it is surprising that the mechanisms of translational regulation are not more diverse. In the present review, we summarize the impact of stress on translation initiation, highlighting both the similarities and distinctions between various stress responses. Finally, we speculate as to how yeast cells generate stress-responsive programmes of protein production when regulation is focused on the same steps in the translation pathway.  相似文献   

2.
3.
4.
5.
Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1st-and 2nd-order lines, with the 2nd-order lines being encoded by a subset of the mechanisms sensitive to 1st-order lines.  相似文献   

6.
Recent results of evolutionary genomics and other research programmes indicate an important role for environment-dependent selection in speciation, but the conceptual frameworks of speciation genetics and environmental stress physiology have not been fully integrated. Only a small number of model systems have been established for cross-disciplinary studies of this type in animals and plants. In these taxa (e.g. Drosophila and Arabidopsis/Arabis), studies of the mechanistic basis of various stress responses are increasingly combined with attempts to understand their evolutionary consequences. Our understanding of the role of environmental stress in speciation would benefit from studies of a larger variety of taxa. We pinpoint areas for future study and predict that in many taxa 'broad' hybrid zones maintained by ecological selection will be valuable venues for addressing the link between environmental stress, adaptation, and speciation.  相似文献   

7.
Journal of Mammalian Evolution - We studied the relationship between the variability and contemporary distribution of pelage phenotypes in one of most widely distributed felid species and an array...  相似文献   

8.
Hespos SJ 《Current biology : CB》2007,17(16):R628-R630
Language acquisition is quite sophisticated by four months of age. Two cues that babies use to discriminate their language from another are the stress patterns of words and visual cues inherent in language production.  相似文献   

9.
Vienne  C.  Soroker  V.  Hefetz  A. 《Insectes Sociaux》1995,42(3):267-277
Summary In homospecific groups of ants, each species has its own hydrocarbon profile, on the epicuticle and in the postpharyngeal gland (PPG). When reared together in bispecific groups, workers of both species possess each other's hydrocarbons in both locations. The present study investigated two alternative mechanisms by which a mixed odour in artificial groups ofFormica selysi/Manica rubida can be created. Using [1-14C] sodium acetate as a precursor,de novo biosynthesis of hydrocarbons was demonstrated for both species whether reared in homospecific or mixed-species groups. The newly synthesized hydrocarbons occurred on the epicuticle, internally, and in particularly large amounts in the PPG. As expected from their PPG and epicuticular hydrocarbons composition, workersF. selysi synthesized alkanes and alkenes in comparable amounts irrespective of their rearing scheme. Likewise,M. rubida reared in bispecific groups synthesized mostly alkanes with only negligible amounts of alkenes, according to a ratio characteristic toM. rubida workers from homospecific groups and not toF. selysi workers. During dyadic encounters, a transfer of labeled hydrocarbons between nestmates (conspecific in homospecific groups and allospecific in mixed groups) was observed. These results suggest that the formation of the mixed hydrocarbon profile in artificial groups of ants is the result of a transfer of these chemicals between nestmates rather thande novo biosynthesis of the allospecific hydrocarbons. Behaviours like trophallaxis, grooming and body contact that occurred during the encounters mediated such a transfer.  相似文献   

10.
11.
Mammalian development involves significant interactions between offspring and mother. But is this interaction a carefully coordinated effort by two individuals with a common goal—offspring survival? Or is it an evolutionary battleground (a central idea in our understanding of reproduction). The conflict between parents and offspring extends to an offspring''s genes, where paternally inherited genes favor demanding more from the mother, while maternally inherited genes favor restraint. This “intragenomic conflict” (among genes within a genome) is the dominant evolutionary explanation for “genomic imprinting.” But a new study in PLOS Biology provides support for a different perspective: that imprinting might facilitate coordination between mother and offspring. According to this “coadaptation theory,” paternally inherited genes might be inactivated because maternally inherited genes are adapted to function harmoniously with the mother. As discussed in this article, the growth effects associated with the imprinted gene Grb10 are consistent with this idea, but it remains to be seen just how general the pattern is.  相似文献   

12.
13.
Classical Marr-Albus theories of cerebellar learning employ only cortical sites of plasticity. However, tests of these theories using adaptive calibration of the vestibulo–ocular reflex (VOR) have indicated plasticity in both cerebellar cortex and the brainstem. To resolve this long-standing conflict, we attempted to identify the computational role of the brainstem site, by using an adaptive filter version of the cerebellar microcircuit to model VOR calibration for changes in the oculomotor plant. With only cortical plasticity, introducing a realistic delay in the retinal-slip error signal of 100 ms prevented learning at frequencies higher than 2.5 Hz, although the VOR itself is accurate up to at least 25 Hz. However, the introduction of an additional brainstem site of plasticity, driven by the correlation between cerebellar and vestibular inputs, overcame the 2.5 Hz limitation and allowed learning of accurate high-frequency gains. This “cortex-first” learning mechanism is consistent with a wide variety of evidence concerning the role of the flocculus in VOR calibration, and complements rather than replaces the previously proposed “brainstem-first” mechanism that operates when ocular tracking mechanisms are effective. These results (i) describe a process whereby information originally learnt in one area of the brain (cerebellar cortex) can be transferred and expressed in another (brainstem), and (ii) indicate for the first time why a brainstem site of plasticity is actually required by Marr-Albus type models when high-frequency gains must be learned in the presence of error delay.  相似文献   

14.
15.
16.
17.
European forests are populated with a variety of wind‐pollinated tree species. Their pollen productivity and spatio‐temporal pattern are largely unknown. Long‐term data (17 years) collected at 22 sites across Austria were presented and the pollen production of 12 tree genera was analysed. We ranked the tree genera according to their pollen productivity taking actual tree abundances of the Austrian Forestry Inventory into account. The productivity varied strongly among tree genera with a maximum for Betula. Pollen production in Larix, Abies and Picea amounted to approximately 1/20, while in increasing order Salix, Quercus, Alnus, Populus and Fraxinus produced approximately 1/3 to 1/4 of the respective Betula estimate. In general, pollen quantity in broadleaves was higher than in conifers. We analysed the temporal pollen production pattern by means of hierarchical cluster analysis and identified three major groups: [(Fagus, Larix, Picea, Abies), (Alnus, Betula, Fraxinus)], [Carpinus],[Populus, Salix, Pinus, Quercus]. Distance matrices based on life‐history traits as well as molecular phylogeny were also constructed; they correlated significantly with each other by means of Mantel‐tests. However, there was no significant relationship between the distances on temporal pollen production with the other matrices. Intermittent or idiosyncratic pollen production was studied by means of deviation from expected means, skewness and spindle diagrams. We proposed that Fagus, Carpinus, Larix, Picea and Abies belong to ‘masting pollen producers’, while the remaining genera idiosyncratically produced pollen over the monitored period. Moreover we correlated the distance matrix of pollen production for each tree genus at each sampling site with respective ‘ecological distance matrices’ based on aerial and altitudinal distance among sites. Significant correlations were detected for tree genera (Fagus, Larix, Picea) which were also prone to pollen masting, thus indicating a Moran effect.  相似文献   

18.
As a result of pioneering work of Hofmann (1973, 1989), nutritional ecologists classify ruminants into three feeding-type categories: browsers (concentrate feeders), grazers, and intermediate or mixed feeders. Hofmann proposed that these feeding types result from evolutionary adaptations in the anatomy of the digestive system and that one consequence is shorter retention of the digesta in the rumen of browsers, and thus a decreased efficiency of fiber digestion relative to that of grazers. We examined the hypotheses that (1) fiber digestion of browsers is lower than that of grazers, (2) salivary gland size is larger in all browsers than in grazers, (3) the browser's larger salivary glands produce larger volumes of thin serous saliva than those of grazers, and (4) thus, browsers have higher liquid passage rates than do grazers. We found that the extent of fiber digestion is not significantly different between browsers and grazers, although fiber digestion is positively related to herbivore size. In general, salivary gland size is approximately 4 times larger in browsers than grazers, but some browsers (e.g., greater kudu) have small, grazer-sized salivary glands. Resting (non-feeding or ruminating) saliva flow rates of mule deer (browser) and domestic sheep and cattle (grazers) were not significantly different from each other. Finally, ruminal liquid flow rates were not different between feeding types. We conclude that many of Hofmann's nutritional and physiological interpretations of anatomical differences amongst ruminants are not supportable.  相似文献   

19.
ABSTRACT: The cell cycle is a tightly controlled series of events that ultimately lead to cell division. The literature deciphering the molecular processes involved in regulating the consecutive cell cycle steps is colossal. By contrast, much less is known about non-dividing cellular states, even if they concern the vast majority of cells, from prokaryotes to multi-cellular organisms. Indeed, cells decide to enter the division cycle only if conditions are favourable. Otherwise they may enter quiescence, a reversible non-dividing cellular state. Recent studies in yeast have shed new light on the transition between proliferation and quiescence, re-questioning the notion of cell cycle commitment. They also indicate a predominant role for cellular metabolic status as a major regulator of quiescence establishment and exit. Additionally, a growing body of evidence indicates that environmental conditions, and notably the availability of various nutrients, by impinging on specific metabolic routes, directly regulate specific cellular re-organization that occurs upon proliferation/quiescence transitions.  相似文献   

20.
Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso‐ and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation‐resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso‐ and hypersaline habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号