首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population genetic and phylogenetic analyses of mitochondrial COI from five deep-sea hydrothermal vent annelids provided insights into their dispersal modes and barriers to gene flow. These polychaetes inhabit vent fields located along the East Pacific Rise (EPR) and Galapagos Rift (GAR), where hundreds to thousands of kilometers can separate island-like populations. Long-distance dispersal occurs via larval stages, but larval life histories differ among these taxa. Mitochondrial gene flow between populations of Riftia pachyptila, a siboglinid worm with neutrally buoyant lecithothrophic larvae, is diminished across the Easter Microplate region, which lies at the boundary of Indo-Pacific and Antarctic deep-sea provinces. Populations of the siboglinid Tevnia jerichonana are similarly subdivided. Oasisia alvinae is not found on the southern EPR, but northern EPR populations of this siboglinid are subdivided across the Rivera Fracture Zone. Mitochondrial gene flow of Alvinella pompejana, an alvinellid with large negatively buoyant lecithotrophic eggs and arrested embryonic development, is unimpeded across the Easter Microplate region. Gene flow in the polynoid Branchipolynoe symmytilida also is unimpeded across the Easter Microplate region. However, A. pompejana populations are subdivided across the equator, whereas B. symmitilida populations are subdivided between the EPR and GAR axes. The present findings are compared with similar evidence from codistributed species of annelids, molluscs and crustaceans to identify potential dispersal filters in these eastern Pacific ridge systems.  相似文献   

2.
Microbial cells often serve as an evolutionary battlefield for different types of mobile genetic elements, such as viruses and plasmids. Here, we describe the isolation and characterization of two new archaeal plasmids which share the host with the spindle-shaped Thermococcus prieurii virus 1 (TPV1). The two plasmids, pTP1 and pTP2, were isolated from the hyperthermophilic archaeon Thermococcus prieurii (phylum Euryarchaeota), a resident of a deep-sea hydrothermal vent located at the East Pacific Rise at 2,700-m depth (7°25′24 S, 107°47′66 W). pTP1 (3.1 kb) and pTP2 (2.0 kb) are among the smallest known plasmids of hyperthermophilic archaea, and both are predicted to replicate via the rolling-circle mechanism. The two plasmids and the virus TPV1 do not have a single gene in common and stably propagate in infected cells without any apparent antagonistic effect on each other. The compatibility of the three genetic elements and the high copy number of pTP1 and pTP2 plasmids (50 copies/cell) might be useful for developing new genetic tools for studying hyperthermophilic euryarchaea and their viruses.  相似文献   

3.
Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.  相似文献   

4.
Hybrid zones provide an opportunity to study the effects of selection and gene flow in natural settings. We employed nuclear microsatellites (single sequence repeat (SSR)) and candidate gene single-nucleotide polymorphism markers (SNPs) to characterize the genetic architecture and patterns of interspecific gene flow in the Picea glauca × P. engelmannii hybrid zone across a broad latitudinal (40–60 degrees) and elevational (350–3500 m) range in western North America. Our results revealed a wide and complex hybrid zone with broad ancestry levels and low interspecific heterozygosity, shaped by asymmetric advanced-generation introgression, and low reproductive barriers between parental species. The clinal variation based on geographic variables, lack of concordance in clines among loci and the width of the hybrid zone points towards the maintenance of species integrity through environmental selection. Congruency between geographic and genomic clines suggests that loci with narrow clines are under strong selection, favoring either one parental species (directional selection) or their hybrids (overdominance) as a result of strong associations with climatic variables such as precipitation as snow and mean annual temperature. Cline movement due to past demographic events (evidenced by allelic richness and heterozygosity shifts from the average cline center) may explain the asymmetry in introgression and predominance of P. engelmannii found in this study. These results provide insights into the genetic architecture and fine-scale patterns of admixture, and identify loci that may be involved in reproductive barriers between the species.  相似文献   

5.
Evidence is accumulating that gene flow commonly occurs between recently diverged species, despite the existence of barriers to gene flow in their genomes. However, we still know little about what regions of the genome become barriers to gene flow and how such barriers form. Here, we compare genetic differentiation across the genomes of bumblebee species living in sympatry and allopatry to reveal the potential impact of gene flow during species divergence and uncover genetic barrier loci. We first compared the genomes of the alpine bumblebee Bombus sylvicola and a previously unidentified sister species living in sympatry in the Rocky Mountains, revealing prominent islands of elevated genetic divergence in the genome that colocalize with centromeres and regions of low recombination. This same pattern is observed between the genomes of another pair of closely related species living in allopatry (B. bifarius and B. vancouverensis). Strikingly however, the genomic islands exhibit significantly elevated absolute divergence (dXY) in the sympatric, but not the allopatric, comparison indicating that they contain loci that have acted as barriers to historical gene flow in sympatry. Our results suggest that intrinsic barriers to gene flow between species may often accumulate in regions of low recombination and near centromeres through processes such as genetic hitchhiking, and that divergence in these regions is accentuated in the presence of gene flow.  相似文献   

6.
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and -Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.  相似文献   

7.
The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.  相似文献   

8.
J P A Gardner  K-J Wei 《Heredity》2015,114(3):344-355
A multidisciplinary approach has identified sigmoidal genetic clines on the east and west coasts in central New Zealand where low-density ecological interactions occur between northern and southern lineages of the endemic greenshell mussel, Perna canaliculus. The sigmoidal clines indicate the existence of a mussel hybrid zone in a region of genetic discontinuities for many continuously distributed coastal taxa, in particular marine invertebrates. Examination of the genetic architecture of the hybrid zone revealed the differential contribution of individual microsatellite loci and/or alleles to defining the zone of interaction and no evidence of increased allelic richness or heterozygosity inside versus outside the hybrid zone. Genomics cline analysis identified one locus in particular (Pcan1–27) as being different from neutral expectations, thereby contributing to lineage differentiation. Estimates of contemporary gene flow revealed very high levels of within-lineage self-recruitment and a hybrid zone composed mostly (~85%) of northern immigrants. Broad scale interpretation of these results is consistent with a zone of genetic interaction that was generated between 0.3 and 1.3 million years before present at a time of pronounced global sea-level change. At that time, the continuous distribution of the greenshell mussel was split into northern and southern groups, which differentiated to become distinct lineages, and which have subsequently been reunited (secondary contact) resulting in the generation of the hybrid zone at ~42°S.  相似文献   

9.

Background

We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9°50′N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes.

Methodology/Principal Findings

After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4–7, H''loge: 0.11–0.45), vigorous flow tubeworm (S: 8–23; H''loge: 0.44–2.00) to low flow mussel habitats (S: 28–31; H''loge: 2.34–2.60).

Conclusions/Significance

Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents.  相似文献   

10.
Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30°C over a 48 h recovery period at 5°C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a ‘cold’ stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin.  相似文献   

11.
Group-wise diversity of sediment methylotrophs of Chilika lake (Lat. 19°28′–19°54′N; Long. 85°06′–85°35′E) Odisha, India at various identified sites was studied. Both the culturable and unculturable (metagenome) methylotrophs were investigated in the lake sediments employing both mxaF and 16S rRNA genes as markers. ARDRA profiling, 16S rRNA gene sequencing, PAGE profiling of HaeIII, EcoRI restricted mxaF gene and the mxaF gene sequences using culture-dependent approach revealed the relatedness of α-proteobacteria and Methylobacterium, Hyphomicrobium and Ancyclobacter sp. The total viable counts of the culturable aerobic methylotrophs were relatively higher in sediments near the sea mouth (S3; Panaspada), also demonstrated relatively high salinity (0.1 M NaCl) tolerance. Metagenomic DNA from the sediments, amplified using GC clamp mxaF primers and resolved through DGGE, revealed the diversity within the unculturable methylotrophic bacterium Methylobacterium organophilum, Ancyclobacter aquaticus, Burkholderiales and Hyphomicrobium sp. Culture-independent analyses revealed that up to 90 % of the methylotrophs were unculturable. The study enhances the general understandings of the metagenomic methylotrophs from such a special ecological niche.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0510-3) contains supplementary material, which is available to authorized users.  相似文献   

12.
Population genetic structure in the marine environment can be influenced by life‐history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct‐developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well‐known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation‐by‐distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large‐scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north‐south population genetic break occurring between Māhia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation‐by‐distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta‐population detected in the Auckland region.  相似文献   

13.
Mercury Adaptation among Bacteria from a Deep-Sea Hydrothermal Vent   总被引:4,自引:1,他引:3       下载免费PDF全文
Since deep-sea hydrothermal vent fluids are enriched with toxic metals, it was hypothesized that (i) the biota in the vicinity of a vent is adapted to life in the presence of toxic metals and (ii) metal toxicity is modulated by the steep physical-chemical gradients that occur when anoxic, hot fluids are mixed with cold oxygenated seawater. We collected bacterial biomass at different distances from a diffuse flow vent at 9°N on the East Pacific Rise and tested these hypotheses by examining the effect of mercuric mercury [Hg(II)] on vent bacteria. Four of six moderate thermophiles, most of which were vent isolates belonging to the genus Alcanivorax, and six of eight mesophiles from the vent plume were resistant to >10 μM Hg(II) and reduced it to elemental mercury [Hg(0)]. However, four psychrophiles that were isolated from a nearby inactive sulfide structure were Hg(II) sensitive. A neighbor-joining tree constructed from the deduced amino acids of a PCR-amplified fragment of merA, the gene encoding the mercuric reductase (MR), showed that sequences obtained from the vent moderate thermophiles formed a unique cluster (bootstrap value, 100) in the MR phylogenetic tree, which expanded the known diversity of this locus. The temperature optimum for Hg(II) reduction by resting cells and MR activity in crude cell extracts of a vent moderate thermophile corresponded to its optimal growth temperature, 45°C. However, the optimal temperature for activity of the MR encoded by transposon Tn501 was found to be 55 to 65°C, suggesting that, in spite of its original isolation from a mesophile, this MR is a thermophilic enzyme that may represent a relic of early evolution in high-temperature environments. Results showing that there is enrichment of Hg(II) resistance among vent bacteria suggest that these bacteria have an ecological role in mercury detoxification in the vent environment and, together with the thermophilicity of MR, point to geothermal environments as a likely niche for the evolution of bacterial mercury resistance.  相似文献   

14.
Invasive species cause extensive damage to their introduced ranges. Ocean archipelagos are particularly vulnerable to invasive taxa. In this study, we used polymorphic microsatellite markers to investigate the genetic structure of the social wasp Vespula pensylvanica in its native range of North America and its introduced range in the archipelago of Hawaii. Our goal was to gain a better understanding of the invasion dynamics of social species and the processes affecting biological invasions. We found that V. pensylvanica showed no significant genetic isolation by distance and little genetic structure over a span of 2000 km in its native range. This result suggests that V. pensylvanica can successfully disperse across large distances either through natural‐ or human‐mediated mechanisms. In contrast to the genetic patterns observed in the native range, we found substantial genetic structure in the invasive V. pensylvanica range in Hawaii. The strong patterns of genetic differentiation within and between the Hawaiian Islands may reflect the effects of geographic barriers and invasion history on gene flow. We also found some evidence for gene flow between the different islands of Hawaii which was likely mediated through human activity. Overall, this study provides insight on how geographic barriers, invasion history, and human activity can shape population genetic structure of invasive species.  相似文献   

15.
Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.  相似文献   

16.
17.
The study was planned to evaluate the inter, and intra population genetic variation in general protein banding pattern in Oestrus ovis larvae, by using 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The larvae were collected from slaughtered goats head from five different locations (AAS, PN, LA, GM, and BC) of Karachi, Pakistan. The data obtained was subjected to POPGENE (Population Genetic Analysis) software for analysis. The polymorphic loci within populations ranged from 45.45% to 90.91%. Polymorphic loci observed in all populations were 90.91%. The expected heterozygosity observed was 0.182 ± 0.096 in all populations. The chi-square test showed 5 out of 11 loci at H-W equilibrium. The overall fixation index (FST) value was 0.108, showing that the likelihood of subpopulations being differentiated from one another is about 11 percent. The gene flow value (Nm = 2.065) was higher, showing that genes flow occurs between populations. The values of genetic identity were greater, and genetic distance were smaller among all the populations, which means that all the populations were more alike and closer to each other. It was concluded that there was no sympatric and parapatric population differentiation observed among all the population of O. ovis and the populations of the five different locations were not genetically and reproductively isolated from each other.  相似文献   

18.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   

19.
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117°C) and surface seawater (29.9°C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82°C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84°C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84°C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.  相似文献   

20.
Background and Aims Sorbus domestica (Rosaceae) is one of the rarest deciduous tree species in Europe and is characterized by a scattered distribution. To date, no large-scale geographic studies on population genetics have been carried out. Therefore, the aims of this study were to infer levels of molecular diversity across the major part of the European distribution of S. domestica and to determine its population differentiation and structure. In addition, spatial genetic structure was examined together with the patterns of historic and recent gene flow between two adjacent populations.Methods Leaf or cambium samples were collected from 17 populations covering major parts of the European native range from north-west France to south-east Bulgaria. Seven nuclear microsatellites and one chloroplast minisatellite were examined and analysed using a variety of methods.Key Results Allelic richness was unexpectedly high for both markers within populations (mean per locus: 3·868 for nSSR and 1·647 for chloroplast minisatellite). Moreover, there was no evidence of inbreeding (mean Fis = –0·047). The Italian Peninsula was characterized as a geographic region with comparatively high genetic diversity for both genomes. Overall population differentiation was moderate (FST = 0·138) and it was clear that populations formed three groups in Europe, namely France, Mediterranean/Balkan and Austria. Historic gene flow between two local Austrian populations was high and asymmetric, while recent gene flow seemed to be disrupted.Conclusions It is concluded that molecular mechanisms such as self-incompatibility and high gene flow distances are responsible for the observed level of allelic richness as well as for population differentiation. However, human influence could have contributed to the present genetic pattern, especially in the Mediterranean region. Comparison of historic and recent gene flow may mirror the progress of habitat fragmentation in eastern Austria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号