首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newberry KJ  Hou YM  Perona JJ 《The EMBO journal》2002,21(11):2778-2787
Cysteinyl-tRNA synthetase (CysRS) is highly specific for synthesis of cysteinyl adenylate, yet does not possess the amino acid editing activity characteristic of many other tRNA synthetases. To elucidate how CysRS is able to distinguish cysteine from non-cognate amino acids, crystal structures of the Escherichia coli enzyme were determined in apo and cysteine-bound states. The structures reveal that the substrate cysteine thiolate forms a single direct interaction with a zinc ion bound at the base of the active site cleft, in a trigonal bipyramidal geometry together with four highly conserved protein side chains. Cysteine binding induces movement of the zinc ion towards substrate, as well as flipping of the conserved Trp205 indole ring to pack on the thiol side chain. The imidazole groups of five conserved histidines lie adjacent to the zinc ion, forming a unique arrangement suggestive of functional significance. Thus, amino acid discrimination without editing arises most directly from the favorable zinc-thiolate interaction, which is not possible for non-cognate substrates. Additional selectivity may be generated during the induced-fit conformational changes that help assemble the active site.  相似文献   

2.
The crystal structure of human recombinant poly(ADP-ribose) polymerase (PARP) complexed with a potent inhibitor, FR257517, was solved at 3.0 A resolution. The fluorophenyl part of the inhibitor induces an amazing conformational change in the active site of PARP by motion of the side chain of the amino acid, Arg878, which forms the bottom of the active site. Consequently, a corn-shaped hydrophobic subsite, which consists of the side chains of Leu769, Ile879, Pro881, and the methylene chain of Arg878, newly emerges from the well-known active site.  相似文献   

3.
L Ustynyuk  B Bennett  T Edwards  R C Holz 《Biochemistry》1999,38(35):11433-11439
Seven aliphatic and two aromatic alcohols were tested as reporters of the substrate selectivity of the aminopeptidase from Aeromonas proteolytica (AAP). This series of alcohols was chosen to systematically probe the effect of carbon chain length, steric bulk, and inhibitor shape on the inhibition of AAP. Initially, however, the question of whether AAP is denatured in the presence of aliphatic alcohols was addressed. On the basis of circular dichroism (CD), electronic absorption, and fluorescence spectra, the secondary structure of AAP, with and without added aliphatic alcohols, was unchanged. These data clearly indicate that AAP is not denatured in aliphatic alcohols, even up to concentrations of 20% (v/v). All of the alcohols studied were competitive inhibitors of AAP with K(i) values between 860 and 0.98 mM. The clear trend in the data was that as the carbon chain length increases from one to four, the K(i) values increase. Branching of the carbon chains also increases the K(i) values, but large bulky groups, such as that found in tert-butyl alcohol, do not inhibit AAP as well as leucine analogues, such as 3-methyl-1-butanol. The competitive nature of the inhibition indicates that the substrate and each alcohol studied are mutually exclusive due to binding at the same site on the enzyme. On the basis of EPR and electronic absorption data for Co(II)-substituted AAP, none of the alcohols studied binds to the dinuclear metallo-active site of AAP. Thus, reaction of the inhibitory alcohols with the catalytic metal ions cannot constitute the mechanism of inhibition. Combination of these data suggests that each of these inhibitors bind only to the hydrophobic pocket of AAP and, consequently, block the binding of substrate. Thus, the first step in peptide hydrolysis is the recognition of the N-terminal amino acid side chain by the hydrophobic pocket adjacent to the dinuclear active site of AAP.  相似文献   

4.
Binding of the competitive, slow-binding inhibitor bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-leucine) to the aminopeptidase from Aeromonas proteolytica (AAP) was examined by both spectroscopic and crystallographic methods. Electronic absorption spectra of the catalytically competent [Co_(AAP)], [CoCo(AAP)], and [ZnCo(AAP)] enzymes recorded in the presence of bestatin revealed that both of the divalent metal ions in AAP are involved in binding bestatin. The electron paramagnetic resonance (EPR) spectrum of the [CoCo(AAP)]-bestatin complex exhibited no observable perpendicular- or parallel-mode signal. These data indicate that the two Co(II) ions in AAP are antiferromagnetically coupled yielding an S = 0 ground state and suggest that a single oxygen atom bridges between the two divalent metal ions. The EPR data obtained for [CoZn(AAP)] and [ZnCo(AAP)] confirm that bestatin interacts with both metal ions. The X-ray crystal structure of the [ZnZn(AAP)]-bestatin complex was solved to 2.0 A resolution. Both side chains of bestatin occupy a well-defined hydrophobic pocket that is adjacent to the dinuclear Zn(II) active site. The amino acid residues ligated to the dizinc(II) cluster in AAP are identical to those in the native structure with only minor perturbations in bond length. The alkoxide oxygen of bestatin bridges between the two Zn(II) ions in the active site, displacing the bridging water molecule observed in the native [ZnZn(AAP)] structure. The M-M distances observed in the AAP-bestatin complex and native AAP are identical (3.5 A) with alkoxide oxygen atom distances of 2.1 and 1.9 A from Zn1 and Zn2, respectively. Interestingly, the backbone carbonyl oxygen atom of bestatin is coordinated to Znl at a distance of 2.3 A. In addition, the NH(2) group of bestatin, which mimics the N-terminal amine group of an incoming peptide, binds to Zn2 with a bond distance of 2.3 A. A combination of the spectroscopic and X-ray crystallographic data presented herein with the previously reported mechanistic data for AAP has provided additional insight into the substrate-binding step of peptide hydrolysis as well as insight into important small molecule features for inhibitor design.  相似文献   

5.
The nature of the interaction of the transition-state analogue inhibitor L-leucinephosphonic acid (LPA) with the leucine aminopeptidase from Aeromonas proteolytica (AAP) was investigated. LPA was shown to be a competitive inhibitor at pH 8.0 with a K(i) of 6.6 microM. Electronic absorption spectra, recorded at pH 7.5 of [CoCo(AAP)], [CoZn(AAP)], and [ZnCo(AAP)] upon addition of LPA suggest that LPA interacts with both metal ions in the dinuclear active site. EPR studies on the Co(II)-substituted forms of AAP revealed that the environments of the Co(II) ions in both [CoZn(AAP)] and [ZnCo(AAP)] become highly asymmetric and constrained upon the addition of LPA and clearly indicate that LPA interacts with both metal ions. The X-ray crystal structure of AAP complexed with LPA was determined at 2.1 A resolution. The X-ray crystallographic data indicate that LPA interacts with both metal centers in the dinuclear active site of AAP and a single oxygen atom bridge is absent. Thus, LPA binds to the dinuclear active site of AAP as an eta-1,2-mu-phosphonate with one ligand to the second metal ion provided by the N-terminal amine. A structural comparison of the binding of phosphonate-containing transition-state analogues to the mono- and bimetallic peptidases provides insight into the requirement for the second metal ion in bridged bimetallic peptidases. On the basis of the results obtained from the spectroscopic and X-ray crystallographic data presented herein along with previously reported mechanistic data for AAP, a new catalytic mechanism for the hydrolysis reaction catalyzed by AAP is proposed.  相似文献   

6.
Accurate translation of the genetic code depends on the ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids. In order to investigate the basis of amino acid recognition and to understand the role played by the zinc ion present in the active site of threonyl-tRNA synthetase, we have determined the crystal structures of complexes of an active truncated form of the enzyme with a threonyl adenylate analog or threonine. The zinc ion is directly involved in threonine recognition, forming a pentacoordinate intermediate with both the amino group and the side chain hydroxyl. Amino acid activation experiments reveal that the enzyme shows no activation of isosteric valine, and activates serine at a rate 1,000-fold less than that of cognate threonine. This study demonstrates that the zinc ion is neither strictly catalytic nor structural and suggests how the zinc ion ensures that only amino acids that possess a hydroxyl group attached to the beta-position are activated.  相似文献   

7.
Branched-chain amino acid aminotransferase (BCAT), which has pyridoxal 5'-phosphate as a cofactor, is a key enzyme in the biosynthetic pathway of hydrophobic amino acids (leucine, isoleucine, and valine). The enzyme reversibly catalyzes the transfer of the amino group of a hydrophobic amino acid to 2-oxoglutarate to form a 2-oxo acid and glutamate. Therefore, the active site of BCAT should have a mechanism to enable recognition of an acidic amino acid as well as a hydrophobic amino acid (double substrate recognition). The three-dimensional structures of Escherichia coli BCAT (eBCAT) in complex with the acidic substrate (glutamate) and the acidic substrate analogue (glutarate) have been determined by X-ray diffraction at 1.82 and 2.15 A resolution, respectively. The enzyme is a homo hexamer, with the polypeptide chain of the subunit folded into small and large domains, and an interdomain loop. The eBCAT in complex with the natural substrate, glutamate, was assigned as a ketimine as the most probable form based upon absorption spectra of the crystal complex and the shape of the residual electron density corresponding to the cofactor-glutamate bond structure. Upon binding of an acidic substrate, the interdomain loop approaches the substrate to shield it from the solvent region, as observed in the complex with a hydrophobic substrate. Both the acidic and the hydrophobic side chains of the substrates are bound to almost the same position in the pocket of the enzyme and are identical in structure. The inner side of the pocket is mostly hydrophobic to accommodate the hydrophobic side chain but has four sites to coordinate with the gamma-carboxylate of glutamate. The mechanism for the double substrate recognition observed in eBCAT is in contrast to those in aromatic amino acid and histidinol-phosphate aminotransferases. In an aromatic amino acid aminotransferase, the acidic side chain is located at the same position as that for the aromatic side chain because of large-scale rearrangements of the hydrogen bond network. In the histidinol-phosphate aminotransferase, the acidic and basic side chains are located at different sites and interact with different residues of the disordered loop.  相似文献   

8.
The crystal structure of a quinohemoprotein amine dehydrogenase from Pseudomonas putida has been determined at 1.9-A resolution. The enzyme comprises three non-identical subunits: a four-domain alpha-subunit that harbors a di-heme cytochrome c, a seven-bladed beta-propeller beta-subunit that provides part of the active site, and a small gamma-subunit that contains a novel cross-linked, proteinous quinone cofactor, cysteine tryptophylquinone. More surprisingly, the catalytic gamma-subunit contains three additional chemical cross-links that encage the cysteine tryptophylquinone cofactor, involving a cysteine side chain bridged to either an Asp or Glu residue all in a hitherto unknown thioether bonding with a methylene carbon atom of acidic amino acid side chains. Thus, the structure of the 79-residue gamma-subunit is quite unusual, containing four internal cross-links in such a short polypeptide chain that would otherwise be difficult to fold into a globular structure.  相似文献   

9.
In order to characterize the active site of yeast dipeptidase in more detail, kinetic studies with a variety of dipeptide substrates and substrate analogs were performed. To analyze kinetic data, computer programs were developed which first calculate initial velocities from progress curves and then evaluate the kinetic parameters by nonlinear regression analysis. A free carboxyl group is a prerequisite for binding of dipeptidase substrates; its position relative to the peptide bond must not deviate from the normal L-dipeptide conformation. The spatial arrangement of the terminal ammonium ion seems to be less crucial. The enzyme's substrate specificity clearly reflects the interactions of the substrate amino acid side chains with complementary dipeptidase subsites. The domain of the enzyme in contact with the C-terminal substrate side chain seems to be an open structure of moderately hydrophobic character. In contrast, the binding site for the amino-terminal side chain is a more strongly hydrophobic "pocket" of limited dimensions. The kinetics of inhibition by free amino acids points to an ordered release of products from the enzyme.  相似文献   

10.
The refined high resolution crystal structure of the bovine phospholipase A2 was compared with its counterpart from the venom of Crotalus atrox, the western diamondbacked rattlesnake. The strong similarity in their backbone conformations forms the basis of a common numbering system for the amino acid sequence. The three common major helices and much of the extended chain form a nearly identical "homologous core" structure. The variations in conformation usually arise from deletions/insertions or en bloc shifts of structural units. The exception to this is part of the highly conserved calcium-binding loop; however, this is to be expected as 1) there is no calcium ion sequestered in the venom dimer as there is in the case of the bovine enzyme and 2) two side chains in that segment form dimer-stabilizing interactions between the subunits of the C. atrox enzyme. The absolutely conserved catalytic network of hydrogen-bonded side chains formed by His 48, Tyr 52, Tyr 73, and Asp 99, as well as the hydrophobic wall that shields it, are virtually superimposable in the two structures. However, the details of the structural relationship between the amino terminus and the catalytic network differ in the two species and the ordered water molecules thought to be either functionally or structurally important in the pancreatic enzymes are not found in the crystal structure of the phospholipase A2 from C. atrox. The most striking difference from a functional standpoint is the fact that the surface depression in the region of the catalytic network that has been commonly considered the active site is shielded substantially in forming the intersubunit contact surface of the dimeric venom enzyme.  相似文献   

11.
We have solved the crystal structure of the Holliday junction resolving enzyme T7 endonuclease I at 2.1 A resolution using the multiwavelength anomalous dispersion (MAD) technique. Endonuclease I exhibits strong structural specificity for four-way DNA junctions. The structure shows that it forms a symmetric homodimer arranged in two well-separated domains. Each domain, however, is composed of elements from both subunits, and amino acid side chains from both protomers contribute to the active site. While no significant structural similarity could be detected with any other junction resolving enzyme, the active site is similar to that found in several restriction endonucleases. T7 endonuclease I therefore represents the first crystal structure of a junction resolving enzyme that is a member of the nuclease superfamily of enzymes.  相似文献   

12.
A highly conserved threonine residue marks the amino acid binding pocket within the editing active site of leucyl-tRNA synthetases (LeuRSs). It is essential to substrate specificity for the Escherichia coli enzyme in that it blocks the cognate leucine amino acid from binding in the hydrolytic editing active site. We combined mutagenesis and computational approaches to elucidate the molecular role of the critical side chain of this threonine residue. Removal of the terminal methyl group of the threonine side chain by replacement with serine yielded a mutant LeuRS that hydrolyzes Leu-tRNA(Leu). Substitution of valine for the conserved threonine conferred similar activities to the wild-type enzyme. However, an additional substitution within the editing active site suggested synergistic interactions with the conserved threonine site that significantly affected amino acid editing. On the basis of our combined biochemical and computational data, we propose that the threonine 252 side chain not only sterically hinders the cognate charged leucine from binding for hydrolysis but also plays a critical role in maintaining an active site geometry that is required for the fidelity of LeuRS.  相似文献   

13.
Copper amine oxidases (CAOs) post-translationally construct a redox-active quinone from an amino acid side chain in their polypeptide chain. As such, these enzymes illustrate how nature is able to expand upon naturally-occurring side chains to create new, catalytically powerful functionalities. The active sites of the CAOs are highly unusual in their ability to catalyze two very different reactions: single-turnover, oxygen-dependent quinone formation, followed by catalytic oxidation (formally dehydrogenation) of amines. This review summarizes our current understanding of the pathway whereby the 2,4,5-trihydroxyphenylalanyl quinone (TPQ) cofactor is generated from the phenolic side chain of tyrosine. This reaction occurs spontaneously intermediates in the presence of O(2) and active site bound Cu(II), without the assistance of other proteins or cofactors. Ongoing work has focused on uncovering the details of the TPQ formation mechanism. A larger goal is to understand how a single active site is capable of supporting both quinone formation and subsequent catalytic turnover.  相似文献   

14.
The inhibition by L-amino acids and their derivatives of tyrosine phenol-lyase is investigated. Tyramine, alpha-phenylethylamine and tryptamine have no detectable inhibition effect and hence are weakly bonded by an active site. The aromatic amino acid amides are competitive inhibitors but do not manifest an enzymatic isotope exchange of alpha-proton in D2O. Free amino acids however are competitive inhibitors and in the majority of cases exchange alpha-proton. The presence of COOH-group is therefore an important feature which determines the binding efficiency and causes the "active" conformation of the amino acid-PLP complex labelising alpha-proton. In the absence of functional and bulky groups in the amino acid side chain the hydrophobicity is found to be the main factor determining the binding efficiency. For these amino acids a correlation exists between-RTlnKi and side chain hydrophobicity. The amino acids bearing the bulky groups, i. e. valine, leucine and isoleucine have reduced binding efficiency. Lysine and arginine bearing positively charged functional groups possess no inhibition effect. Aspartic and glutamic acids are anomalously strong inhibitors taking into consideration low hydrophobicity of their side chains. One can assume that the electrophilic group able to interact with the terminal COO- -group of aspartic and glutamic acids is located in the active site of tyrosine phenollyase.  相似文献   

15.
Influenza virus neuraminidase catalyses the cleavage of terminal sialic acid, the viral receptor, from carbohydrate chains on glycoproteins and glycolipids. We present the crystal structure of the enzymatically active head of influenza B virus neuraminidase from the strain B/Beijing/1/87. The native structure has been refined to a crystallographic R-factor of 14.8% at 2.2 A resolution and its complex with sialic acid refined at 2.8 A resolution. The overall fold of the molecule is very similar to the already known structure of neuraminidase from influenza A virus, with which there is amino acid sequence homology of approximately 30%. Two calcium binding sites have been identified. One of them, previously undescribed, is located between the active site and a large surface antigenic loop. The calcium ion is octahedrally co-ordinated by five oxygen atoms from the protein and one water molecule. Sequence comparisons suggest that this calcium site should occur in all influenza A and B virus neuraminidases. Soaking of sialic acid into the crystals has enabled the mode of binding of the reaction product in the putative active site pocket to be revealed. All the large side groups of the sialic acid are equatorial and are specifically recognized by nine fully conserved active site residues. These in turn are stabilized by a second shell of 10 highly conserved residues principally by an extensive network of hydrogen bonds.  相似文献   

16.
The three-dimensional structures of the isoleucine ketimine and the pyridoxamine phosphate forms of human mitochondrial branched chain aminotransferase (hBCATm) have been determined crystallographically at 1.9 A resolution. The hBCATm-catalyzed transamination can be described in molecular terms together with the earlier solved pyridoxal phosphate forms of the enzyme. The active site lysine, Lys202, undergoes large conformational changes, and the pyridine ring of the cofactor tilts by about 18 degrees during catalysis. A major determinant of the enzyme's substrate and stereospecificity for L-branched chain amino acids is a group of hydrophobic residues that form three hydrophobic surfaces and lock the side chain in place. Short-chain aliphatic amino acid side chains are unable to interact through van der Waals contacts with any of the surfaces whereas bulky aromatic side chains would result in significant steric hindrance. As shown by modeling, and in agreement with previous biochemical data, glutamate but not aspartate can form hydrogen bond interactions. The carboxylate group of the bound isoleucine is on the same side as the phosphate group of the cofactor. These active site interactions are largely retained in a model of the human cytosolic branched chain aminotransferase (hBCATc), suggesting that residues in the second tier of interactions are likely to determine the specificity of hBCATc for the drug gabapentin. Finally, the structures reveal a unique role for cysteine residues in the mammalian BCAT. Cys315 and Cys318, which immediately follow a beta-turn (residues 311-314) and are located just outside the active site, form an unusual thiol-thiolate hydrogen bond. This beta-turn positions Thr313 for its interaction with the pyridoxal phosphate oxygens and substrate alpha-carboxylate group.  相似文献   

17.
The ion permeability of transmembrane channels formed by the linear gramicidins is altered by amino acid sequence substitutions. We have previously shown that the polarity of the side chain at position one is important in modulating a channel's conductance and ion selectivity [Russel et al. (1986) Biophys. J. 49, 673-686]. Changes in polarity could alter ion permeability by (through-space) ion-dipole interactions or by (through-bond) inductive electron shifts. We have addressed this question by investigating the permeability characteristics of channels formed by gramicidins where the NH2-terminal amino acid is either phenylalanine or one of a series of substituted phenylalanines: p-hydroxy-, p-methoxy-, o-fluoro-, m-fluoro-, or p-fluorophenylalanine. The electron-donating or -withdrawing nature, as quantified by the Hammett constant, ranges from -0.37 to +0.34 for these side chains. Channels formed by these gramicidins show a more than 2.5-fold variation in their Na+ conductance, but the conductance variations do not rank in the order of the Hammett constants of the side chains. Inductive effects cannot therefore be of primary importance in the modulation of the gramicidin single-channel conductance by these side chains. The results support previous suggestions that electrostatic interactions between side chain dipoles and permeating ions can modify the energy profile for ion movement through the gramicidin channel and thus alter the conductance.  相似文献   

18.
Ferrochelatase catalyzes the terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin to form protoheme IX. The crystal structures of human ferrochelatase both with and without the protoporphyrin substrate bound have been determined previously. The substrate-free enzyme has an open active site pocket, while in the substrate-bound enzyme, the active site pocket is closed around the porphyrin macrocycle and a number of active site residues have reoriented side chains. To understand how and why these structural changes occur, we have substituted three amino acid residues (H263, H341, and F337) whose side chains occupy different spatial positions in the substrate-free versus substrate-bound ferrochelatases. The catalytic and structural properties of ferrochelatases containing the amino acid substitutions H263C, H341C, and F337A were examined. It was found that in the H263C and H341C variants, but not the F337A variant enzymes, the side chains of N75, M76, R164, H263, F337, H341, and E343 are oriented in a fashion similar to what is found in ferrochelatase with the bound porphyrin substrate. However, all of the variant forms possess open active site pockets which are found in the structure of porphyrin-free ferrochelatase. Thus, while the interior walls of the active site pocket are remodeled in these variants, the exterior lips remain unaltered in position. One possible explanation for this collective reorganization of active site side chains is the presence of a hydrogen bond network among H263, H341, and E343. This network is disrupted in the variants by alteration of H263C or H341C. In the substrate-bound enzyme, the formation of a hydrogen bond between H263 and a pyrrole nitrogen results in disruption of the network. The possible role of this network in catalysis is discussed.  相似文献   

19.
The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with β-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 dd-peptidase structures reveal the presence of a specific binding site for the d-α-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these β-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and β-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 dd-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.  相似文献   

20.
The amino acid sequences of the 51% different horseradish peroxidase HRP C and turnip peroxidase TP 7 have previously been completed by us, but the three-dimensional structures are unknown. Recently the amino acid sequence and the crystal structure of yeast cytochrome c peroxidase have appeared. The three known apoperoxidases consist of 300 +/- 8 amino acid residues. The sequences have now been aligned and show 18% and 16% identity only, between the yeast peroxidase and plant peroxidase HRP C and TP 7, respectively. We show that different structural tests all support similar protein folds in plant peroxidases and yeast peroxidase and, therefore, a common evolutionary origin. The following tests support this thesis: (a) predicted helices in the plant peroxidases follow the complex pattern observed in the crystal structure of cytochrome c peroxidase; (b) their hydropathic profiles are similar and agree with observed buried and exposed peptide chain in cytochrome c peroxidase; (c) half-cystines which are distant in the amino acid sequence of plant peroxidases become spatial neighbours when fitted into the cytochrome c peroxidase model; (d) the two-domain structure proposed from limited proteolysis of apoperoxidase HRP C is observed in the crystal structure of cytochrome c peroxidase. The similarities and differences of the plant and yeast peroxidases and the reactive side chains of a plant peroxidase active site are described. The characteristics of Ca2+-binding sequences, derived from several superfamilies, are applied to predict the Ca2+-binding sequences in plant peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号