首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycine residues can introduce flexibility in proteins, give rise to turns and breaks in secondary structure and are key components of some nucleotide binding motifs. In the P2X receptor extracellular ATP binding domain, 11 glycine residues are completely conserved and an additional five are conserved in at least five of the seven family members. We have mutated individual conserved glycine residues and determined their effect on the ATP sensitivity and time-course of P2X1 receptors expressed in Xenopus oocytes. In the majority of cases, replacement by alanine had no or a less than 3-fold effect on ATP sensitivity and time-course of responses. G71A resulted in a 6-fold decrease in ATP potency and ATP (10 mM) failed to evoke functional responses from G96A, G250A and G301A mutant receptors. However, proline or cysteine could substitute for glycine at positions 96 and 301, giving receptors that were essentially normal. At glycine 250 substitution by serine gave functional responses to ATP with no effect on ATP sensitivity but a reduction in peak amplitude; in contrast, functional responses were not recorded when glycine 250 was replaced by the amino acids alanine, cysteine, aspartate, phenylalanine, isoleucine, lysine, proline or asparagine. These results suggest that glycine 250 plays an important role in determining the function of P2X receptors.  相似文献   

2.
The phosphate binding loop (GXXXXGKT(S)) is conserved in several mononucleotide-binding proteins with similar three-dimensional structures. Although variations in other amino acids have been noted, the first glycine and glycine-lysine residues are highly conserved in all enzymes, whose role is yet to be understood. Alanine substitutions for critically positioned glycines—G234, G237, and G239—were generated for the catalytic A-subunit of A-ATP synthase from Pyrococcus horikoshii OT3, and their crystal structures were determined. They showed altered conformation for the phosphate binding loop, with G234A and G237A becoming flat and with G239A taking an intermediate conformation, resulting in the active-site region being closed to nucleotide entry. Furthermore, the essential amino acids S238 and K240, which normally interact with the nucleotide, become inaccessible. These mutant structures demonstrate the role of the strictly conserved glycine residues in guarding the active-site region for nucleotide entrance in archaea-type ATP synthases.  相似文献   

3.
Glycine residues are recognized as important structural determinants in nucleotide-binding domains of many enzymes. The functional significance of seven glycine residues invariant in all 22 eNTPDase sequences was therefore examined. Glycine-to-alanine mutants of eNTPDase3 were analyzed for nucleotidase activities and tertiary and quaternary structure changes. Mutations G98A and G183A had modest effects on ATPase and ADPase activities. The G141A mutation resulted in 4- to 5-fold decreased nucleotidase activity, while the G222A mutation decreased ATPase activity 20-fold, and ADPase activity 6-fold. Unlike the other five glycine mutants, the G263A and G462A mutations caused significant loss of nucleotidase activity which was observed concomitant with lower protein expression levels, large-scale changes in tertiary and quaternary protein structure, and decreased trafficking to the plasma membrane. Thus, these data identify glycine residues that are essential for enzymatic activity and the tertiary and quaternary structure of eNTPDase3. Further, two additional conserved regions in the eNTPDases are identified, apyrase conserved regions ACR1a and ACR4a, which may be involved in phosphate binding/hydrolysis and protein folding, respectively.  相似文献   

4.
Miyazono K  Sawano Y  Tanokura M 《Proteins》2005,61(1):196-205
To elucidate the structural basis for the high stability of acylphosphatase (AcP) from Pyrococcus horikoshii OT3, we determined its crystal structure at 1.72 A resolution. P. horikoshii AcP possesses high stability despite its approximately 30% sequence identity with eukaryotic enzymes that have moderate thermostability. The overall fold of P. horikoshii AcP was very similar to the structures of eukaryotic counterparts. The crystal structure of P. horikoshii AcP shows the same fold betaalphabetabetaalphabeta topology and the conserved putative catalytic residues as observed in eukaryotic enzymes. Comparison with the crystal structure of bovine common-type AcP and that of D. melanogaster AcP (AcPDro2) as representative of eukaryotic AcP revealed some significant characteristics in P. horikoshii AcP that likely play important roles in structural stability: (1) shortening of the flexible N-terminal region and long loop; (2) an increased number of ion pairs on the protein surface; (3) stabilization of the loop structure by hydrogen bonds. In P. horikoshii AcP, two ion pair networks were observed one located in the loop structure positioned near the C-terminus, and other on the beta-sheet. The importance of ion pairs for structural stability was confirmed by site-directed mutation and denaturation induced by guanidium chloride.  相似文献   

5.
The subunit KtrB of bacterial Na+-dependent K+-translocating KtrAB systems belongs to a superfamily of K+ transporters. These proteins contain four repeated domains, each composed of two transmembrane helices connected by a putative pore loop (p-loop). The four p-loops harbor a conserved glycine residue at a position equivalent to a glycine selectivity filter residue in K+ channels. We investigated whether these glycines also form a selectivity filter in KtrB. The single residues Gly70, Gly185, Gly290, and Gly402 from p-loops P(A) to P(D) of Vibrio alginolyticus KtrB were replaced with alanine, serine, or aspartate. The three alanine variants KtrB(A70), KtrB(A185), and KtrB(A290) maintained a substantial activity in KtrAB-mediated K+ uptake in Escherichia coli. This activity was associated with a decrease in the affinity for K+ by 2 orders of magnitude, with little effect on Vmax. Minor activities were also observed for three other variants: KtrB(A402), KtrB(S70), and KtrB(D185). With all of these variants, the property of Na+ dependence of K+ transport was preserved. Only the four serine variants mediated Na+ uptake, and these variants differed considerably in their K+/Na+ selectivity. Experiments on cloned ktrB in the pBAD18 vector showed that V. alginolyticus KtrB alone was still active in E. coli. It mediated Na+-independent, slow, high affinity, and mutation-specific K+ uptake as well as K+-independent Na+ uptake. These data demonstrate that KtrB contains a selectivity filter for K+ ions and that all four conserved p-loop glycine residues are part of this filter. They also indicate that the role of KtrA lies in conferring velocity and ion coupling to the Ktr complex.  相似文献   

6.
Like other AAA proteins, Escherichia coli FtsH, a membrane-bound AAA protease, contains highly conserved aromatic and glycine residues (Phe228 and Gly230) that are predicted to lie in the central pore region of the hexamer. The functions of Phe228 and Gly230 were probed by site-directed mutagenesis. The results of both in vivo and in vitro assays indicate that these conserved pore residues are important for FtsH function and that bulkier, uncharged/apolar residues are essential at position 228. None of the point mutants, F228A, F228E, F228K, or G230A, was able to degrade sigma32, a physiological substrate. The F228A mutant was able to degrade casein, an unfolded substrate, although the other three mutants were not. Mutation of these two pore residues also affected the ATPase activity of FtsH. The F228K and G230A mutations markedly reduced ATPase activity, whereas the F228A mutation caused a more modest decrease in this activity. The F228E mutant was actually more active ATPase. The substrates, sigma32 and casein, stimulated the ATPase activity of wild type FtsH. The ATPase activity of the mutants was no longer stimulated by casein, whereas that of the three Phe228 mutants, but not the G230A mutant, remained sigma32-stimulatable. These results suggest that Phe228 and Gly230 in the predicted pore region of the FtsH hexamer have important roles in proteolysis and its coupling to ATP hydrolysis.  相似文献   

7.
Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation.  相似文献   

8.
Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of the native protein, where most of the native interactions are partially established. The transition state of AcP turns out to be remarkably similar in structure to that of the activation domain of procarboxypeptidase A2 (ADA2h), a protein having the same overall topology but sharing only 13% sequence identity with AcP. This suggests that transition states are conserved between proteins with the same native fold. Comparison of the rates of folding of AcP and four other proteins with the same topology, including ADA2h, supports the concept that the average distance in sequence between interacting residues (that is, the contact order) is an important determinant of the rate of protein folding.  相似文献   

9.
Lacticin 481 is a lanthionine-containing bacteriocin (lantibiotic) produced by Lactococcus lactis subsp. lactis. The final steps of lacticin 481 biosynthesis are proteolytic removal of an N-terminal leader sequence from the prepeptide LctA and export of the mature lantibiotic. Both proteolysis and secretion are performed by the dedicated ATP-binding cassette (ABC) transporter LctT. LctT belongs to the family of AMS (ABC transporter maturation and secretion) proteins whose prepeptide substrates share a conserved double-glycine type cleavage site. The in vitro activity of a lantibiotic protease has not yet been characterized. This study reports the purification and in vitro activity of the N-terminal protease domain of LctT (LctT150), and its use for the in vitro production of lacticin 481. The G(-2)A(-1) cleavage site and several other conserved amino acid residues in the leader peptide were targeted by site-directed mutagenesis to probe the substrate specificity of LctT as well as shed light upon the role of these conserved residues in lantibiotic biosynthesis. His 10-LctT150 did not process most variants of the double glycine motif and processed mutants of Glu-8 only very slowly. Furthermore, incorporation of helix-breaking residues in the leader peptide resulted in greatly decreased proteolytic activity by His 10-LctT150. On the other hand, His 10-LctT150 accepted all peptides containing mutations in the propeptide or at nonconserved positions of LctA. In addition, the protease domain of LctT was investigated by site-directed mutagenesis of the conserved residues Cys12, His90, and Asp106. The proteolytic activities of the resulting mutant proteins are consistent with a cysteine protease.  相似文献   

10.
Nucleotide binding domains (NBDs) of the multidrug transporter of Candida albicans, CaCdr1p, possess unique divergent amino acids in their conserved motifs. For example, NBD1 (N-terminal-NBD) possesses conserved signature motifs, while the same motif is divergent in NBD2 (C-terminal-NBD). In this study, we have evaluated the contribution of these conserved and divergent signature motifs of CaCdr1p in ATP catalysis and drug transport. By employing site-directed mutagenesis, we made three categories of mutant variants. These included mutants where all the signature motif residues were replaced with either alanines or mutants with exchanged equipositional residues to mimic the conservancy and degeneracy in opposite domain. In addition, a set of mutants where signature motifs were swapped to have variants with either both the conserved or degenerated entire signature motif. We observed that conserved and equipositional residues of NBD1 and NBD2 and swapped signature motif mutants showed high susceptibility to all the tested drugs with simultaneous abrogation in ATPase and R6G efflux activities. However, some of the mutants displayed a selective increase in susceptibility to the drugs. Notably, none of the mutant variants and WT-CaCdr1p showed any difference in drug and nucleotide binding. Our mutational analyses show not only that certain conserved residues of NBD1 signature sequence (S304, G306, and E307) are important in ATP hydrolysis and R6G efflux but also that a few divergent residues (N1002 and E1004) of NBD2 signature motif have evolved to be functionally relevant and are not interchangeable. Taken together, our data suggest that the signature motifs of CaCdr1p, whether it is divergent or conserved, are nonexchangeable and are functionally critical for ATP hydrolysis.  相似文献   

11.
Triphenylmethane reductase (TMR) catalyzes the NADH-dependent reduction of triphenylmethane dyes. Sequence alignment revealed a region with a conserved GXXGXXG motif near its N-terminus, which corresponds to a conserved structural motif of known dinucleotide-binding proteins. To verify whether some of these glycine residues are important for the enzyme catalysis, these three glycine residues (Gly-7, Gly-10 and Gly-13) were individually replaced by alanine using site-directed mutagenesis. The secondary structures of these mutants, as measured by circular dichroism spectroscopy, did not show remarkable differences as compared with the wild type. The V(max)/K(m) values of mutants G7A and G13A for both Basic fuchsin and NADH were increased about three and twofold over that of the wild type, respectively, whereas the V(max)/K(m) value of mutant G10A were decreased about sixfold. These results suggest that these three glycine residues are involved in the interaction with both substrate and cofactor for the catalytic activity of TMR.  相似文献   

12.
The putative hinge point revealed by the crystal structure of the MthK potassium channel is a glycine residue that is conserved in many ion channels. In high voltage-activated (HVA) Ca(V) channels, the mid-S6 glycine residue is only present in IS6 and IIS6, corresponding to G422 and G770 in Ca(V)1.2. Two additional glycine residues are found in the distal portion of IS6 (Gly(432) and Gly(436) in Ca(V)1.2) to form a triglycine motif unique to HVA Ca(V) channels. Lethal arrhythmias are associated with mutations of glycine residues in the human L-type Ca(2+) channel. Hence, we undertook a mutational analysis to investigate the role of S6 glycine residues in channel gating. In Ca(V)1.2, alpha-helix-breaking proline mutants (G422P and G432P) as well as the double G422A/G432A channel did not produce functional channels. The macroscopic inactivation kinetics were significantly decreased with Ca(V)1.2 wild type > G770A > G422A congruent with G436A > G432A (from the fastest to the slowest). Mutations at position Gly(432) produced mostly nonfunctional mutants. Macroscopic inactivation kinetics were markedly reduced by mutations of Gly(436) to Ala, Pro, Tyr, Glu, Arg, His, Lys, or Asp residues with stronger effects obtained with charged and polar residues. Mutations within the distal GX(3)G residues blunted Ca(2+)-dependent inactivation kinetics and prevented the increased voltage-dependent inactivation kinetics brought by positively charged residues in the I-II linker. In Ca(V)2.3, mutation of the distal glycine Gly(352) impacted significantly on the inactivation gating. Altogether, these data highlight the role of the GX(3)G motif in the voltage-dependent activation and inactivation gating of HVA Ca(V) channels with the distal glycine residue being mostly involved in the inactivation gating.  相似文献   

13.
We report here the characterization of a five-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON). Strik-ingly, this Chinese family displayed high penetrance and expressivity of visual loss. The average age-of-onset of vision loss was 18 years in this family. Nineteen (11 males/8 females) of 29 matrilineal relatives in this family developed visual loss with a wide range of severity,ranging from blindness to normal vision. Sequence analysis of mitochondrial genome in this pedigree revealed the presence of the ND4 G11778A mutation and 44 other variants belonging to Asian haplogroup M7b. The G11778A mutation is present at homoplasmy in matri-lineal relatives of this Chinese family. Of other variants, the CO1 G6480A, ND5 T12811C and Cytb A15395G located at highly conserved residues of corresponding polypeptides. In fact, these variants were implicated to be involved in other clinical abnormalities. Here, these variants may act in synergy with the primary LHON-associated Gl1778A mutation. Thus, the mitochondrial dysfunction caused by the primary ND4 G11778A mutation may be worsened by these mitochondrial variants. The results imply that the G6480A, T12811C and A15395G variants might have a potential modifier role in increasing the penetrance and expressivity of the primary LHON-associated G11778A mutation in this Chinese family.  相似文献   

14.
Previous work shows that the transiently populated, on-pathway intermediate in Im7 folding contains three of the four native alpha-helices docked around a core stabilised by native and non-native interactions. To determine the structure and dynamic properties of this species in more detail, we have used protein engineering to trap the intermediate at equilibrium and analysed the resulting proteins using NMR spectroscopy and small angle X-ray scattering. Four variants were created. In L53AI54A, two hydrophobic residues within helix III are truncated, preventing helix III from docking stably onto the developing hydrophobic core. In two other variants, the six residues encompassing the native helix III were replaced with three (H3G3) or six (H3G6) glycine residues. In the fourth variant, YY, two native tyrosine residues (Tyr55 and Tyr56) were re-introduced into H3G6 to examine their role in determining the properties of the intermediate ensemble. All four variants show variable peak intensities and broad peak widths, consistent with these proteins being conformationally dynamic. Chemical shift analyses demonstrated that L53AI54A and YY contain native-like secondary structure in helices I and IV, while helix II is partly formed and helix III is absent. Lack of NOEs and rapid NH exchange for L53AI54A, combined with detailed analysis of the backbone dynamics, indicated that the hydrophobic core of this variant is not uniquely structured, but fluctuates on the NMR timescale. The results demonstrate that though much of the native-like secondary structure of Im7 is present in the variants, their hydrophobic cores remain relatively fluid. The comparison of H3G3/H3G6 and L53AI54A/YY suggests that Tyr55 and/or Tyr56 interact with the three-helix core, leading other residues in this region of the protein to dock with the core as folding progresses. In this respect, the three-helix bundle acts as a template for formation of helix III and the creation of the native fold.  相似文献   

15.
The sequence of Bcl-2 homology domains, BH1 and BH2, is known to be conserved among anti- and pro-apoptotic members of Bcl-2 family proteins. But structural conservation of these domains with respect to functionally active residues playing role in heterodimerization-mediated regulation of apoptosis has never been elucidated. Here, we have suggested the formation of an active site by structurally conserved residues in BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-2 family members, which also accounts for the functional effect of known mutations in BH1 (G145A, G145E) and BH2 (W188A) domains of Bcl-2.  相似文献   

16.
The DnaJ (Hsp40) cochaperone regulates the DnaK (Hsp70) chaperone by accelerating ATP hydrolysis in a cycle closely linked to substrate binding and release. The J-domain, the signature motif of the Hsp40 family, orchestrates interaction with the DnaK ATPase domain. We studied the J-domain by creating 42 mutant E. coli DnaJ variants and examining their phenotypes in various separate in vivo assays, namely, bacterial growth at low and high temperatures, motility, and propagation of bacteriophage lambda. Most mutants studied behaved like wild type in all assays. In addition to the (33)HisProAsp(35) (HPD) tripeptide found in all known functional J-domains, our study uncovered three new single substitution mutations (Y25A, K26A, and F47A) that totally abolish J-domain function. Furthermore, two glycine substitution mutants in an exposed flexible loop (R36G, N37G) showed partial loss of J-domain function alone and complete loss of function as a triple (RNQ-GGG) mutant coupled with the phenotypically silent Q38G. Interestingly, all the essential residues map to a small region on the same solvent-exposed face of the J-domain. Engineered mutations in the corresponding residues of the human Hdj1 J-domain grafted in E. coli DnaJ also resulted in loss of function, suggesting an evolutionarily conserved interaction surface. We propose that these clustered residues impart critical sequence determinants necessary for J-domain catalytic activity and reversible contact interface with the DnaK ATPase domain.  相似文献   

17.

Background

Ras-like GTPases function as on-off switches in intracellular signalling pathways and include the Rab, Rho/Rac, Ran, Ras, Arf, Sar and Gα families. How these families have evolutionarily diverged from each other at the sequence level provides clues to underlying mechanisms associated with their functional specialization.

Results

Bayesian analysis of divergent patterns within a multiple alignment of Ras-like GTPase sequences identifies a structural component, termed here the glycine brace, as the feature that most distinguishes Rab, Rho/Rac, Ran and (to some degree) Ras family GTPases from other Ras-like GTPases. The glycine brace consists of four residues: An aromatic residue that forms a stabilizing CH-π interaction with a conserved glycine at the start of the guanine-binding loop; a second aromatic residue, which is nearly always a tryptophan, that likewise forms stabilizing CH-π and NH-π interactions with a glycine at the start of the phosphate-binding P-loop; and two other residues (typically an aspartate and a serine or threonine) that, together with a conserved buried water molecule, form a network of interactions connecting the two aromatic residues.

Conclusion

It is proposed that the two glycine residues function as hinges and that the glycine brace influences guanine nucleotide binding and release by interacting with these hinges.  相似文献   

18.
R Batra  M A Geeves  D J Manstein 《Biochemistry》1999,38(19):6126-6134
Three conserved glycine residues in the reactive thiol region of Dictyostelium discoideummyosin II were replaced by alanine residues. The resulting mutants G680A, G684A, and G691A were expressed in the soluble myosin head fragment M761-2R [Anson, M., Geeves, M. A., Kurzawa, S. E., and Manstein, D. J. (1996) EMBO J. 15, 6069-6074] and characterized using transient kinetic methods. Mutant G691A showed no major alterations except for a marked increase in basal Mg2+-ATPase activity. Phosphate release seemed to be facilitated by this mutation, and the addition of actin to G691A stimulated ATP turnover not more than 3-fold. In comparison to M761-2R, mutant constructs G691A and G684A showed a 4-fold reduction in the rate of the ATP cleavage step. Most other changes in the kinetic properties of G684A were small ( approximately 2-fold). In contrast, substitution of G680 by an alanine residue led to large changes in nucleotide binding. Compared to M761-2R, rates of nucleotide binding were 20-30-fold slower and the affinity for mantADP was approximately 10-fold increased due to a 200-fold reduction in the dissociation rate constant of mantADP. The ATP-induced dissociation of actin from the acto.680A complex was normal, but the communication between ADP and actin binding was altered such that the two sites are thermodynamically uncoupled but kinetically actin still accelerates ADP release.  相似文献   

19.
Sequences of 16 NAD and/or NADP-linked aldehyde oxidoreductases are aligned, including representative examples of all aldehyde dehydrogenase forms with wide substrate preferences as well as additional types with distinct specificities for certain metabolic aldehyde intermediates, particularly semialdehydes, yielding pairwise identities from 15 to 83%. Eleven of 23 invariant residues are glycine and three are proline, indicating evolutionary restraint against alteration of peptide chain-bending points. Additionally, another 66 positions show high conservation of residue type, mostly hydrophobic residues. Ten of these occur in predicted beta-strands, suggesting important interior-packing interactions. A single invariant cysteine residue is found, further supporting its catalytic role. A previously identified essential glutamic acid residue is conserved in all but methyl malonyl semialdehyde dehydrogenase, which may relate to formation by that enzyme of a CoA ester as a product rather than a free carboxylate species. Earlier, similarity to a GXGXXG segment expected in the NAD-binding site was noted from alignments with fewer sequences. The same region continues to be indicated, although now only the first glycine residue is strictly conserved and the second (usually threonine) is not present at all, suggesting greater variance in coenzyme-binding interactions.  相似文献   

20.
Gating of inward rectifier Kir1.1 potassium channels by internal pH is believed to occur when large hydrophobic leucines, on each of the four subunits, obstruct the permeation path at the cytoplasmic end of the inner transmembrane helices (TM2). In this study, we examined whether closure of the channel at this point involves bending of the inner helix at one or both of two highly conserved glycine residues (corresponding to G134 and G143 in KirBac1.1) that have been proposed as putative "gating hinges" for potassium channels. Replacement of these conserved inner helical glycines by less flexible alanines did not abolish gating but shifted the apparent pKa from 6.6 +/- 0.01 (wild-type) to 7.1 +/- 0.01 for G157A-Kir1.1b, and to 7.3 +/- 0.01 for G148A-Kir1.1b. When both glycines were mutated the effect was additive, shifting the pKa by 1.2 pH units to 7.8 +/- 0.04 for the double mutant: G157A+G148A. At this pKa, the double mutant would remain completely closed under physiological conditions. In contrast, when the glycine at G148 was replaced by a proline, the pKa was shifted in the opposite direction from 6.6 +/- 0.01 (wild-type) to 5.7 +/- 0.01 for G148P. Although conserved glycines at G148 and G157 made it significantly easier to open the channel, they were not an absolute requirement for pH gating in Kir1.1. In addition, none of the glycine mutants produced more than small changes in either the cell-attached or excised single-channel kinetics which, in this channel, argues against changes in the selectivity filter. The putative pH sensor at K61-Kir1.1b, (equivalent to K80-Kir1.1a) was also examined. Mutation of this lysine to an untitratable methionine did not abolish pH gating, but shifted the pKa into an acid range from 6.6 +/- 0.01 to 5.4 +/- 0.04, similar to pH gating in Kir2.1. Hence K61-Kir1.1b cannot function as the exclusive pH sensor for the channel, although it may act as one of multiple pH sensors, or as a link between a cytoplasmic sensor and the channel gate. K61-Kir1.1b also interacted differently with the two glycine mutations. Gating of the double mutant: K61M+G148A was indistinguishable from K61M alone, whereas gating of K61M+G157A was midway between the alkaline pKa of G157A and the acid pKa of K61M. Finally, closure of ROMK, G148A, G157A, and K61M all required the same L160-Kir1.1b residue at the cytoplasmic end of the inner transmembrane helix. Hence in wild-type and mutant channels, closure occurs by steric occlusion of the permeation path by four leucine side chains (L160-Kir1.1b) at the helix bundle crossing. This is facilitated by the conserved glycines on TM2, but pH gating in Kir1.1 does not absolutely require glycine hinges in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号