首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Some pathological manifestations of diabetes in the eye include retinopathy, cataracts and elevated intraocular pressure (IOP). Loss of retinal ganglion cells (RGCs) in non-proliferative stages of diabetic retinopathy and small increases in IOP in diabetic patients has raised the possibility that diabetes affects the development and progression of ocular hypertension and glaucoma. The Ins2Akita mutation is known to cause diabetes and retinopathy on a C57BL/6J (B6) background by as early as 3 months of age. Here, the impact of the Akita mutation on glaucoma was assessed using DBA/2J (D2) mice, a widely used mouse model of ocular hypertension induced glaucoma. In D2.Ins2Akita/+ mice, the contribution of diabetes to vascular permeability, IOP elevation, RGC loss, and glaucoma development was assessed. D2.Ins2Akita/+ mice developed a severe diabetic nephropathy and early mortality between 6–8 months of age. This agrees with previous reports showing that the D2 background is more susceptible to diabetes than the B6 background. In addition, D2.Ins2Akita/+ mice had vascular leakage, astrocyte reactivity and a significant increase in IOP. However no RGC loss and no anterograde axonal transport dysfunction were found at 8.5 months of age. Therefore, our data show that despite severe diabetes and an increased IOP compared to controls, RGCs do not lose axon transport or degenerate. This may be due to a DBA/2J-specific genetic modifier(s) that could provide novel and important avenues for developing new therapies for diabetic retinopathy and possibly glaucoma.  相似文献   

3.
Restoration of endogenous insulin production by islet transplantation is considered a curative option for patients with type 1 diabetes. However, recurrent autoimmunity and alloreactivity cause graft rejection hindering successful transplantation. Here we tested whether transplant tolerance to allogeneic islets could be achieved in non-obese diabetic (NOD) mice by simultaneously tackling autoimmunity via antigen-specific immunization, and alloreactivity via granulocyte colony stimulating factor (G-CSF) and rapamycin (RAPA) treatment. Immunization with insB9-23 peptide alone or in combination with two islet peptides (IGRP206-214 and GAD524-543) in incomplete Freund’s adjuvant (IFA) were tested for promoting syngeneic pancreatic islet engraftment in spontaneously diabetic NOD mice. Treatment with G-CSF/RAPA alone or in combination with insB9-23/IFA was examined for promoting allogeneic islet engraftment in the same mouse model. InsB9-23/IFA immunization significantly prolonged syngeneic pancreatic islet survival in NOD mice by a mechanism that necessitated the presence of CD4+CD25+ T regulatory (Treg) cells, while combination of three islet epitopes was less efficacious in controlling recurrent autoimmunity. G-CSF/RAPA treatment was unable to reverse T1D or control recurrent autoimmunity but significantly prolonged islet allograft survival in NOD mice. Blockade of interleukin-10 (IL-10) during G-CSF/RAPA treatment resulted in allograft rejection suggesting that IL-10-producing cells were fundamental to achieve transplant tolerance. G-CSF/RAPA treatment combined with insB9-23/IFA did not further increase the survival of allogeneic islets. Thus, insB9-23/IFA immunization controls recurrent autoimmunity and G-CSF/RAPA treatment limits alloreactivity, however their combination does not further promote allogeneic pancreatic islet engraftment in NOD mice.  相似文献   

4.
Chemically-induced diabetic mice and spontaneously diabetic NOD mice have been valuable as recipients for experimental islet transplantation. However, their maintenance often requires parenteral insulin. Diabetogenic chemicals can be cytotoxic to the host’s immune system and to other organs some of which are often used as the transplant site. Procurement of diabetic cohorts in the NOD mouse is problematic due to variability in the age of disease onset. We show that RIP-Kb mice, which spontaneously develop non-immune diabetes due to over-expression of the H-2Kb heavy chain in beta cells, offer many advantages as islet transplant recipients. Diabetes is predictable with a relatively narrow range of onset (4 wk) and blood glucose levels (23.0± 4.0 mmol/l for 39 males at 6 weeks of age). The diabetes is mild enough so that most diabetic mice can be maintained to 40 weeks of age without parenteral insulin. This consistency of diabetes avails that outcomes of intervention can be interpreted with confidence.  相似文献   

5.

Aim

We recently reported that glucose-dependent insulinotropic polypeptide (GIP) prevents the development of atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. GIP receptors (GIPRs) are found to be severely down-regulated in diabetic animals. We examined whether GIP can exert anti-atherogenic effects in diabetes.

Methods

Nondiabetic Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db mice were administered GIP (25 nmol/kg/day) or saline (vehicle) through osmotic mini-pumps for 4 weeks. The animals were assessed for aortic atherosclerosis and for oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages.

Results

Diabetic Apoe −/− mice of 21 weeks of age exhibited more advanced atherosclerosis than nondiabetic Apoe −/− mice of the same age. GIP infusion in diabetic Apoe −/− mice increased plasma total GIP levels by 4-fold without improving plasma insulin, glucose, or lipid profiles. GIP infusion significantly suppressed macrophage-driven atherosclerotic lesions, but this effect was abolished by co-infusions with [Pro3]GIP, a GIPR antagonist. Foam cell formation was stimulated by 3-fold in diabetic Apoe −/− mice compared with their nondiabetic counterparts, but this effect was halved by GIP infusion. GIP infusion also attenuated the foam cell formation in db/db mice. In vitro treatment with GIP (1 nM) reduced foam cell formation by 15% in macrophages from diabetic Apoe −/− mice, and this attenuating effect was weaker than that attained by the same treatment of macrophages from nondiabetic counterparts (35%). While GIPR expression was reduced by only about a half in macrophages from diabetic mice, it was reduced much more dramatically in pancreatic islets from the same animals. Incubation with high glucose (500 mg/dl) for 9–10 days markedly reduced GIPR expression in pancreatic islet cells, but not in macrophages.

Conclusions

Long-term infusion of GIP conferred significant anti-atherogenic effects in diabetic mice even though the GIPR expression in macrophages was mildly down-regulated in the diabetic state.  相似文献   

6.
The in vivo effects of oral administration of the high-chromium yeast to healthy and diabetic mice are described. Given that these complexes are proposed to function by potentiating the actions of insulin and activating the insulin receptor kinase, changes in lipid and carbohydrate metabolism would be expected. After 15 weeks administration (500 μg Cr/kg body mass) to healthy mice, abnormal metabolism and pathological change were not observed. After 15 weeks of treatment (0–1,000 μg Cr/kg body mass) of diabetic mice, the effect of high-chromium yeast on blood lipids and blood glycosylated hemoglobin (GHb) of diabetes are not consistent. High-chromium yeast results in a lowering (P?<?0.05) of GHb and triglyceride, lowering (P?<?0.01) of total cholesterol, and restoration (P?<?0.01) of insulin; these results are in stark contrast to those of diabetic mice of administration of normal yeast, which have no effect on these parameters and serve as control group. The histopathological analysis of pancreas islet shows that high-chromium yeast could profoundly protect the impaired pancreatic islet and β-cells from inflammatory infiltration and fibrosis.  相似文献   

7.
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c?+?c 1 loss. During Fe2+-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe2+. Avocado oil also decreased ROS generation in Fe2+-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.  相似文献   

8.
9.
Reactive oxygen species (ROS) may play key roles in vascular inflammation and atherogenesis in patients with diabetes. In this study, xanthine oxidase (XO) system was examined as a potential source of superoxide in mice with streptozotocin (STZ)-induced experimental diabetes. Plasma XO activity increased 3-fold in diabetic mice (50±33?μU/ml) 2 weeks after the onset of diabetes, as compared with non-diabetic control mice (15±6?μU/ml). In vivo superoxide generation in diabetic mice was evaluated by an in vivo electron spin resonance (ESR)/spin probe method. Superoxide generation was significantly enhanced in diabetic mice, and the enhancement was restored by the administration of superoxide dismutase (SOD) and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), which was reported to scavenge superoxide. Pretreatment of diabetic mice with XO inhibitors, allopurinol and its active metabolite oxipurinol, normalized the increased superoxide generation. In addition, there was a correlation (r=0.78) between the level of plasma XO activity and the relative degree of superoxide generation in diabetic and non-diabetic mice. Hence, the results of this study strongly suggest that superoxide should be generated through the increased XO seen in the diabetic model mice, which may be involved in the pathogenesis of diabetic vascular complications.  相似文献   

10.
Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.  相似文献   

11.
Human islet isolation is associated with adverse conditions inducing apoptosis and necrosis. The aim of the present study was to assess whether antiapoptotic preconditioning can improve in vitro and posttransplant function of isolated human islets. A dose-finding study demonstrated that 200 μmol/L of the caspase-3 inhibitor Ac-DEVD-CMK was most efficient to reduce the expression of activated caspase-3 in isolated human islets exposed to severe heat shock. Ac-DEVD-CMK-pretreated or sham-treated islets were transplanted into immunocompetent or immunodeficient diabetic mice and subjected to static glucose incubation to measure insulin and proinsulin secretion. Antiapoptotic pretreatment significantly deteriorated graft function resulting in elevated nonfasting serum glucose when compared to sham-treated islets transplanted into diabetic nude mice (p < 0.01) and into immunocompetent mice (p < 0.05). Ac-DEVD-CMK pretreatment did not significantly change basal and glucose-stimulated insulin release compared to sham-treated human islets but increased the proinsulin release at high glucose concentrations (20 mM) thus reducing the insulin-to-proinsulin ratio in preconditioned islets (p < 0.05). This study demonstrates that the caspase-3 inhibitor Ac-DEVD-CMK interferes with proinsulin conversion in preconditioned islets reducing their potency to cure diabetic mice. The mechanism behind this phenomenon is unclear so far but may be related to the ketone CMK linked to the Ac-DEVD molecule. Further studies are required to identify biocompatible caspase inhibitors suitable for islet preconditioning.  相似文献   

12.
In diabetes mellitus, pituitary adenylate cyclase-activating polypeptide (PACAP) has insulinotropic and glucose-lowering properties. We previously demonstrated that transgenic mice overexpressing PACAP in pancreatic β-cells (PACAP-Tg) show attenuated pancreatic islet hyperplasia and hyperinsulinemia in type 2 diabetic models. To explore the underlying mechanisms, here we crossed PACAP-Tg mice with lethal yellow agouti (KKAy) diabetic mice, and performed gene chip analysis of laser capture microdissected pancreatic islets from four F1 offspring genotypes (wild-type, PACAP-Tg, KKAy, and PACAP-Tg:KKAy). We identified 1371 probes with >16-fold differences between at least one pair of genotypes, and classified the probes into five clusters with characteristic expression patterns. Gene ontology enrichment analysis showed that genes involved in the terms ribosome and intracellular organelles such as ribonucleoprotein complex, mitochondrion, and chromosome organization were significantly enriched in clusters characterized by up-regulated genes in PACAP-Tg:KKAy mice compared with KKAy mice. These results may provide insight into the mechanisms of diabetes that accompany islet hyperplasia and amelioration by PACAP.  相似文献   

13.
Sciatic nerves of 25-week-old genetically diabetic (C57BL/Ks 〈db/db〉) mice and their litter-mate controls were removed, and their metabolic incorporation of [3H]fucose and [14C]leucine into myelin was studied in vitro. Untreated diabetic animals showed significant increases (p<0.05) in the fucose/leucine incorporation into myelin when compared to values found for their litter-mates. These results correlated well with previous experiments performed on alloxan or streptozotocindiabetic rats and thus show the in vitro incubation procedure to be a good indicator of altered metabolic conditions in peripheral nerves due to diabetes mellitus. The resulting ratio increases seen in diabetic animals is at variance with the decrease in ratios found in animals undergoing typical Wallerian degeneration. These results suggest that different metabolic processes operate in untreated diabetics than in normals or in those undergoing other degenerative nerve processes.  相似文献   

14.
Glis3 is a member of the Gli-similar subfamily. GLIS3 mutations in humans lead to neonatal diabetes, hypothyroidism, and cystic kidney disease. We generated Glis3-deficient mice by gene-targeting. The Glis3−/− mice had significant increases in the basal blood sugar level during the first few days after birth. The high levels of blood sugar are attributed to a decrease in the Insulin mRNA level in the pancreas that is caused by impaired islet development and the subsequent impairment of Insulin-producing cell formation. The pancreatic phenotypes indicate that the Glis3-deficient mice are a model for GLIS3 mutation and diabetes mellitus in humans.  相似文献   

15.
This protocol details a method to analyze the ability of purified hematopoietic progenitors to generate plasmacytoid dendritic cells (pDC) in intestinal Peyer''s patch (PP). Common dendritic cell progenitors (CDPs, lin- c-kitlo CD115+ Flt3+) were purified from the bone marrow of C57BL6 mice by FACS and transferred to recipient mice that lack a significant pDC population in PP; in this case, Ifnar-/- mice were used as the transfer recipients. In some mice, overexpression of the dendritic cell growth factor Flt3 ligand (Flt3L) was enforced prior to adoptive transfer of CDPs, using hydrodynamic gene transfer (HGT) of Flt3L-encoding plasmid. Flt3L overexpression expands DC populations originating from transferred (or endogenous) hematopoietic progenitors. At 7-10 days after progenitor transfer, pDCs that arise from the adoptively transferred progenitors were distinguished from recipient cells on the basis of CD45 marker expression, with pDCs from transferred CDPs being CD45.1+ and recipients being CD45.2+. The ability of transferred CDPs to contribute to the pDC population in PP and to respond to Flt3L was evaluated by flow cytometry of PP single cell suspensions from recipient mice. This method may be used to test whether other progenitor populations are capable of generating PP pDCs. In addition, this approach could be used to examine the role of factors that are predicted to affect pDC development in PP, by transferring progenitor subsets with an appropriate knockdown, knockout or overexpression of the putative developmental factor and/or by manipulating circulating cytokines via HGT. This method may also allow analysis of how PP pDCs affect the frequency or function of other immune subsets in PPs. A unique feature of this method is the use of Ifnar-/- mice, which show severely depleted PP pDCs relative to wild type animals, thus allowing reconstitution of PP pDCs in the absence of confounding effects from lethal irradiation.  相似文献   

16.
Emerging evidences have shown that diabetes mellitus not only raises risk but also heightens mortality rate of cancer. It is not clear, however, whether antitumor CD8+ cytotoxic T lymphocyte (CTL) response is down-modulated in diabetic hosts. We investigated the impact of hyperglycemia on CTLs'' acquisition of tumor-killing capability by utilizing streptozotocin-induced diabetic (STZ-diabetic) mice. Murine diabetes was induced by intraperitoneal injection of STZ (200 mg/kg) in C57BL/6 mice, 2C-T cell receptor (TCR) transgenic and P14-TCR transgenic mice. The study found that, despite harboring intact proliferative capacity measured with CFSE labeling and MTT assay, STZ-diabetic CD8+ CTLs displayed impaired effector functions. After stimulation, STZ-diabetic CD8+ CTLs produced less perforin and TNFα assessed by intracellular staining, as well as expressed less CD103 protein. Furthermore, adoptive transfer of STZ-diabetic P14 CD8+ effector cells showed an insufficient recruitment to the B16.gp33 melanoma and inadequate production of perforin, granzyme B and TNFα determined by immunohistochemistry in the tumor milieu. As a result, STZ-diabetic CD8+ effector cells were neither able to eliminate tumor nor to improve survival of tumor-bearing mice. Taken together, our data suggest that CD8+ CTLs are crippled to infiltrate into tumors and thus fail to acquire tumor-killing capability in STZ-diabetic hosts.  相似文献   

17.

Background

Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice.

Methods and Findings

Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice.

Conclusions

Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes.  相似文献   

18.
Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat−/−) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat−/− diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR.  相似文献   

19.

Background aims

Mesenchymal stromal cells (MSCs) enhance islet function both in vitro and in vivo, at least in part by secreting ligands that activate islet G-protein coupled receptors (GPCRs). We assessed whether pre-treatment with a defined “cocktail” of MSC-secreted GPCR ligands enhances islet functional survival in vitro and improves the outcomes of islet transplantation in an experimental model of diabetes.

Methods

Isolated islets were cultured for 48 h with ANXA1, SDF-1 or C3a, alone or in combination. Glucose-stimulated insulin secretion (GSIS) and cytokine-induced apoptosis were measured immediately after the 48 h culture period and at 24 h or 72 h following removal of the ligands from the culture media. Islets were syngeneically transplanted underneath the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice and blood glucose levels monitored for 28 days.

Results

Pre-culturing islets with a cocktail of ANXA1/SDF-1/C3a potentiated GSIS and protected islet cells from cytokine-induced apoptosis in vitro. These effects were maintained for up to 72 h after the removal of the factors from the culture medium, suggesting a sustained protection of islet graft functional survival during the immediate post-transplantation period. Islets pre-treated with the cocktail of MSC secretory factors were more effective in reducing blood glucose in diabetic mice, consistent with their improved functional survival in vivo.

Discussion

Pre-culturing islets with a cocktail of MSC secretory products offers a well-defined, cell-free approach to improve clinical islet transplantation outcomes while avoiding many of the safety, regulatory and logistical hurdles of incorporating MSCs into transplantation protocols.  相似文献   

20.

Aim

Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice.

Methods and Results

Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice.

Conclusions

Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号