首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoids are most commonly conjugated with various sugar moieties by UDP-sugar:glycosyltransferases (UGTs) in a lineage-specific manner. Generally, the phylogenetics and regiospecificity of flavonoid UGTs are correlated, indicating that the regiospecificity of UGT differentiated prior to speciation. By contrast, it is unclear how the sugar donor specificity of UGTs evolved. Here, we report the biochemical, homology-modeled, and phylogenetic characterization of flavonoid 7-O-glucuronosyltransferases (F7GAT), which is responsible for producing specialized metabolites in Lamiales plants. All of the Lamiales F7GATs were found to be members of the UGT88-related cluster and specifically used UDP-glucuronic acid (UDPGA). We identified an Arg residue that is specifically conserved in the PSPG box in the Lamiales F7GATs. Substitution of this Arg with Trp was sufficient to convert the sugar donor specificity of the Lamiales F7GATs from UDPGA to UDP-glucose. Homology modeling of the Lamiales F7GAT suggested that the Arg residue plays a critical role in the specific recognition of anionic carboxylate of the glucuronic acid moiety of UDPGA with its cationic guanidinium moiety. These results support the hypothesis that differentiation of sugar donor specificity of UGTs occurred locally, in specific plant lineages, after establishment of general regiospecificity for the sugar acceptor. Thus, the plasticity of sugar donor specificity explains, in part, the extraordinary structural diversification of phytochemicals.  相似文献   

2.
Family-1 UDP glycosyltransferases (UGTs) from plants transfer sugar moieties from activated sugar donors to a wide range of small molecules, and control many metabolic processes during plant growth and development. Here, we report a genome-wide analysis of maize that identified 147 Family-1 glycosyltransferases based on their conserved PSPG motifs. Phylogenetic analysis of these genes with 18 Arabidopsis UGTs and two rice UGTs clustered them into 17 groups (A–Q). The patterns of intron gain/loss events, as well as their positions within UGTs from the same group, further aided elucidation of their divergence and evolutionary relationships between UGTs. Expression analysis of the maize UGT genes using both online microarray data and quantitative real-time PCR verification indicates that UGT genes are widely expressed in various tissues and likely play important roles in plant growth and development. Our study provides useful information on the Family-1 UGTs in maize, and will facilitate their further characterization to better understand their functions.  相似文献   

3.
Flavonoids are specialized plant secondary metabolites that are mainly present as glycoconjugates and function as attractants to pollinators and symbionts, UV protectants, allelochemicals, and have antimicrobial and antiherbivore activity for plant health. Because of the heterogeneity of UDP-glycosyltransferases (UGTs) for glycosylation in plants, their function in flavonoid glycosylation remains largely unknown in soybean and other legumes, particularly that of the UGT92 genes. Here, we identified 152 putative UGT92 genes across 48 plant species and elucidated their mode of duplication, expansion/deletion pattern, alignment, phylogenetic analysis, and genome-wide distribution. Two novel UGT-encoding genes Glyma14g04790 (UGT92G1) and Glyma15g03670 (UGT92G2) were isolated from soybean and their heterologous expression was optimized in Escherichia. coli. Both genes exhibited catalytic activity toward quercetin, kaempferol, and myricetin, with UDPglucose as the sugar donor and were characterized as flavanol-specific UGTs. High expression of both UGTs was observed in adaxial and abaxial parenchyma, suspensor cells, and adaxial and abaxial epidermis cells during seed development, suggesting that they are seed-specific flavanol glycosyltransferases in soybean. Co-expression analysis of UGT92 genes with their first and second neighborhood genes provided a basis for their network elucidation in soybean. We provide valuable information on the role of UGT92 in seed development via the glycosylation of multiple flavanols and the potential metabolic engineering of flavonoid compounds in both plants and E. coli.  相似文献   

4.
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein–ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2–3 fold and 6–7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.  相似文献   

5.
6.
UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors. This modification regulates various functions like detoxification of xenobiotics, hormone homeostasis, and biosynthesis of secondary metabolites. Here, we describe the identification of 96 UGT genes in Cicer arietinum (CaUGT) and report their tissue-specific differential expression based on publically available RNA-seq and expressed sequence tag data. This analysis has established medium to high expression of 84 CaUGTs and low expression of 12 CaUGTs. We identified several closely related orthologs of CaUGTs in other genomes and compared their exon-intron arrangement. An attempt was made to assign functional specificity to chickpea UGTs by comparing substrate binding sites with experimentally determined specificity. These findings will assist in precise selection of candidate genes for various applications and understanding functional genomics of chickpea.  相似文献   

7.
8.
Farnesyl pyrophosphate synthase (FPS; EC 2.5.1.10) is a key enzyme in isoprenoid biosynthetic pathway and provides precursors for the biosynthesis of various pharmaceutically important metabolites. It catalyzes head to tail condensation of two isopentenyl pyrophosphate molecules with dimethylallyl pyrophosphate to form C15 compound farnesyl pyrophosphate. Recent studies have confirmed FPS as a molecular target of bisphosphonates for drug development against bone diseases as well as pathogens. Although large numbers of FPSs from different sources are known, very few protein structures have been reported till date. In the present study, FPS gene from medicinal plant Bacopa monniera (BmFPS) was characterized by comparative modeling and docking. Multiple sequence alignment showed two highly conserved aspartate rich motifs FARM and SARM (DDXXD). The 3-D model of BmFPS was generated based on structurally resolved FPS crystal information of Gallus gallus. The generated models were validated by various bioinformatics tools and the final model contained only α-helices and coils. Further, docking studies of modeled BmFPS with substrates and inhibitors were performed to understand the protein ligand interactions. The two Asp residues from FARM (Asp100 and Asp104) as well as Asp171, Lys197 and Lys262 were found to be important for catalytic activity. Interaction of nitrogen containing bisphosphonates (risedronate, alendronate, zoledronate and pamidronate) with modeled BmFPS showed competitive inhibition; where, apart from Asp (100, 104 and 171), Thr175 played an important role. The results presented here could be useful for designing of mutants for isoprenoid biosynthetic pathway engineering well as more effective drugs against osteoporosis and human pathogens.

Abbreviations

IPP - Isopentenyl Pyrophosphate, DMAPP - Dimethylallyl Pyrophosphate, GPP - Geranyl Pyrophosphate, FPP - FPPFarnesyl Pyrophosphate, DOPE - Discrete Optimized Protein Energy, BmFPS - Bacopa monniera Farnesyl Pyrophosphate Synthase, RMSD - Root Mean square Deviation, OPLS-AA - Optimized Potentials for Liquid Simulations- All Atom, FARM - First Aspartate Rich Motif, SARM - Second Aspartate Rich Motif.  相似文献   

9.
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2″-O-glucosyltransferase (A3Glc2″GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.  相似文献   

10.

Background and Aims

Water limitations can inhibit photosynthesis and change gene expression in ways that diminish or prevent reproductive development in plants. Sucrose fed to the plants can reverse the effects. To test whether the reversal acts generally by replacing the losses from photosynthesis, sucrose was fed to the stems of shaded maize plants (Zea mays) during reproductive development.

Methods

Shading was adjusted to mimic the inhibition of photosynthesis around the time of pollination in water-limited plants. Glucose and starch were imaged and quantified in the female florets. Sucrose was infused into the stems to vary the sugar flux to the ovaries.

Key Results

Ovaries normally grew rapidly and contained large amounts of glucose and starch, with a glucose gradient favouring glucose movement into the developing ovary. Shade inhibited photosynthesis and diminished ovary and kernel size, weight, and glucose and starch contents compared with controls. The glucose gradient became small. Sucrose fed to the stem reversed these losses, and kernels were as large as the controls.

Conclusions

Despite similar inhibition of photosynthesis, the depletion of ovary glucose and starch was not as severe in shade as during a comparable water deficit. Ovary abortion prevalent during water deficits did not occur in the shade. It is suggested that this difference may have been caused by more translocation in shade than during the water deficit, which prevented low sugar contents necessary to trigger an up-regulation of senescence genes known to be involved in abortion. Nevertheless, sucrose feeding reversed kernel size losses and it is concluded that feeding acted generally to replace diminished photosynthetic activity.  相似文献   

11.

Background and Aims

Spring geophytes require a period of low temperature for proper flower development but the mechanism that underlies the relationship between cold treatment and flowering remains unknown. The present study aims to compare the developmental anatomy and carbohydrate content of the tuberous geophyte Corydalis bracteata growing under natural winter conditions from 10 to −10 °C (field-grown) and under a mild temperature regime of 18 °C (indoor-grown plants).

Methods

Samples were studied under light and electron microscopy. A histochemical test (periodic acid – Schiff''s) was employed to identify starch in sectioned material. Sugars were analysed by capillary gas chromatography. Apoplastic wash fluid was prepared.

Key Results

Under natural conditions, shoots were elongated, and buds gained in dry mass and developed normally. For indoor-grown plants, these parameters were lower in value and, from December, a progressive necrosis of flower buds was observed. The tuber consisted of the new developing one, which was connected to the bud, and the old tuber with its starch reserve. Due to the absence of plasmodesmata between new and old tuber cells, sugar transport cannot be through the symplast. Thus, a potential apoplastic route is proposed from old tuber phloem parenchyma cells to the adjacent new tuber cells. Sugar content in buds during the autumn months (September–November) was lower for indoor-grown plants than control plants, whereas the sugar content in tubers during the same period was similar for plants from both temperature treatments. However, the amount of apoplastic sugars in tubers of field-grown plants was almost 15-fold higher than in indoor-grown tubers.

Conclusions

The results suggest that low temperature activates the apoplastic route of sugar transport in C. bracteata tubers and a consequent carbohydrate delivery to the bud. In the absence of cold treatment, the carbohydrate reserve is locked in old tuber cells so the nutrient supply to the buds is suppressed, possibly leading to bud abortion.  相似文献   

12.
13.
14.

Background and Aims

Early ontogenetic stages of myrmecophytic plants are infrequently associated with ants, probably due to constraints on the production of rewards. This study reports for the first time the anatomical and histological limitations constraining the production of extrafloral nectar in young plants, and the implications that the absence of protective ants imposes for plants early during their ontogeny are discussed.

Methods

Juvenile, pre-reproductive and reproductive plants of Turnera velutina were selected in a natural population and their extrafloral nectaries (EFNs) per leaf were quantified. The anatomical and morphological changes in EFNs during plant ontogeny were studied using scanning electron and light microscopy. Extrafloral nectar volume and sugar concentration were determined as well as the number of patrolling ants.

Key Results

Juvenile plants were unable to secrete or contain nectar. Pre-reproductive plants secreted and contained nectar drops, but the highest production was achieved at the reproductive stage when the gland is fully cup-shaped and the secretory epidermis duplicates. No ants were observed in juvenile plants, and reproductive individuals received greater ant patrolling than pre-reproductive individuals. The issue of the mechanism of extrafloral nectar release in T. velutina was solved given that we found an anatomical, transcuticular pore that forms a channel-like structure and allows nectar to flow outward from the gland.

Conclusions

Juvenile stages had no ant protection against herbivores probably due to resource limitation but also due to anatomical constraints. The results are consistent with the growth-differentiation balance hypothesis. As plants age, they increase in size and have larger nutrient-acquiring, photosynthetic and storage capacity, so they are able to invest in defence via specialized organs, such as EFNs. Hence, the more vulnerable juvenile stage should rely on other defensive strategies to reduce the negative impacts of herbivory.  相似文献   

15.

Background

Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment.

Methods

A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC).

Results

This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins.

Conclusions

This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations.  相似文献   

16.

Background

A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS).

Results

A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides.

Conclusions

The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1152) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.

Results

In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa.

Conclusions

These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-426) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink.

Results

Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production.

Conclusions

CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1571-8) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species’ association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment.

Results

Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance.

Conclusions

G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1422-7) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号