首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-strand break (dsb) is one of the most critical lesions leading to a variety of radiobiological effects. In this paper, we reconsider the previously constructed and generally accepted mathematical models for dsb generation, and give a concrete mathematical basis for the generation of dsbs and the calculation of the number of induced dsbs, under the assumption of randomness in the break location in DNA and in the number of breaks. Using these models based on the Poisson distribution and the binomial distribution, we calculate the dose dependence of dsb generation. We deduced from our models that the dose dependence of the number of dsbs is described approximately as a quadratic form in both distribution models where dsb generation is accounted for by two ssbs. Previously reported experimental data on the dsb generation in phage DNA was found to be in good agreement with our models. Though the widely used model, the linear quadratic (LQ) model or the molecular theory of dsb formation based on the Poisson distribution, also gives the quadratic term, in spite of rough estimates or some mathematical incompleteness, a marked feature of our formulation is the absence of a parameter like the $\beta $ in the quadratic term that requires experimental data to determine. Thus in this study we provide mathematical validity to the generally accepted models of the number of dsb.  相似文献   

2.
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.  相似文献   

3.
Lu C  Zhu F  Cho YY  Tang F  Zykova T  Ma WY  Bode AM  Dong Z 《Molecular cell》2006,23(1):121-132
Immunofluorescence studies have revealed that H2AX is phosphorylated at the sites of DNA double-strand breaks induced by ionizing radiation and is required for recruitment of repair factors into nuclear foci after DNA damage. Therefore, the function of H2AX is believed to be associated primarily with repair of DNA damage. Here, we report a function of H2AX in cellular apoptosis. Our data showed that H2AX is phosphorylated by UVA-activated JNK. We also provided evidence showing that UVA induces caspase-3 and caspase-activated DNase (CAD) activity in both H2AX wild-type and H2AX knockout mouse embryonic fibroblasts (MEFs). However, DNA fragmentation occurred only in H2AX wild-type MEFs. Furthermore, H2AX phosphorylation was critical for DNA degradation triggered by CAD in vitro. Taken together, these data indicated that H2AX phosphorylation is required for DNA ladder formation, but not for the activation of caspase-3; and the JNK/H2AX pathway cooperates with the caspase-3/CAD pathway resulting in cellular apoptosis.  相似文献   

4.
The controlling role of ATM in homologous recombinational repair of DNA damage   总被引:32,自引:0,他引:32  
The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.  相似文献   

5.
In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells.  相似文献   

6.
Low- and high-linear energy transfer (LET) ionising radiation are effective cancer therapies, but produce structurally different forms of DNA damage. Isolated DNA damage is repaired efficiently; however, clustered lesions may be more difficult to repair, and are considered as significant biological endpoints. We investigated the formation and repair of DNA double-strand breaks (DSBs) and clustered lesions in human fibroblasts after exposure to sparsely (low-LET; delivered by photons) and densely (high-LET; delivered by carbon ions) ionising radiation. DNA repair factors (pKu70, 53BP1, γH2AX, and pXRCC1) were detected using immunogold-labelling and electron microscopy, and spatiotemporal DNA damage patterns were analysed within the nuclear ultrastructure at the nanoscale level. By labelling activated Ku-heterodimers (pKu70) the number of DSBs was determined in electron-lucent euchromatin and electron-dense heterochromatin. Directly after low-LET exposure (5 min post-irradiation), single pKu70 dimers, which reflect isolated DSBs, were randomly distributed throughout the entire nucleus with a linear dose correlation up to 30 Gy. Most euchromatic DSBs were sensed and repaired within 40 min, whereas heterochromatic DSBs were processed with slower kinetics. Essentially all DNA lesions induced by low-LET irradiation were efficiently rejoined within 24 h post-irradiation. High-LET irradiation caused localised energy deposition within the particle tracks, and generated highly clustered DNA lesions with multiple DSBs in close proximity. The dimensions of these clustered lesions along the particle trajectories depended on the chromatin packing density, with huge DSB clusters predominantly localised in condensed heterochromatin. High-LET irradiation-induced clearly higher DSB yields than low-LET irradiation, with up to ∼500 DSBs per μm3 track volume, and large fractions of these heterochromatic DSBs remained unrepaired. Hence, the spacing and quantity of DSBs in clustered lesions influence DNA repair efficiency, and may determine the radiobiological outcome.  相似文献   

7.
Toyooka T  Ibuki Y 《FEBS letters》2005,579(28):6338-6342
Phosphorylation of histone H2AX (termed gamma-H2AX) was recently identified as an early event after induction of DNA double strand breaks (DSBs). We have previously shown that co-exposure to benzo[a]pyrene (BaP), a wide-spread environmental carcinogen, and ultraviolet A (UVA), a major component of solar UV radiation, induced DSBs in mammalian cells. In the present study, we examined whether co-exposure to BaP and UVA generates gamma-H2AX in CHO-K1 cells. Single treatment with BaP (10(-9)-10(-7)M) or UVA ( approximately 2.4 J/cm(2)) did not result in gamma-H2AX, however, co-exposure drastically induced foci of gamma-H2AX in a dose-dependent manner. gamma-H2AX could be detected even at very low concentration of BaP (10(-9)M) plus UVA (0.6J/cm(2)), which did not change cell survival rates. NaN(3) effectively inhibited the formation of gamma-H2AX induced by co-exposure, indicating the contribution of singlet oxygen. This is the first evidence that co-exposure to BaP and UVA induced DSBs, involving gamma-H2AX.  相似文献   

8.
MTA1 (metastasis-associated protein 1), an integral component of the nucleosome remodeling and deacetylase complex, has recently been implicated in the ionizing radiation-induced DNA damage response. However, whether MTA1 also participates in the UV-induced DNA damage checkpoint pathway remains unknown. In response to UV radiation, ATR (ataxia teleangiectasia- and Rad3-related) is the major kinase activated that orchestrates cell cycle progression with DNA repair machinery by phosphorylating and activating a number of downstream substrates, such as Chk1 (checkpoint kinase 1) and H2AX (histone 2A variant X). Here, we report that UV radiation stabilizes MTA1 in an ATR-dependent manner and increases MTA1 binding to ATR. On the other hand, depletion of MTA1 compromises the ATR-mediated Chk1 activation following UV treatment, accompanied by a marked down-regulation of Chk1 and its interacting partner Claspin, an adaptor protein that is required for the phosphorylation and activation of Chk1 by ATR. Furthermore, MTA1 deficiency decreases the induction of phosphorylated H2AX (referred to as γ-H2AX) and γ-H2AX focus formation after UV treatment. Consequently, depletion of MTA1 results in a defect in the G2-M checkpoint and increases cellular sensitivity to UV-induced DNA damage. Thus, MTA1 is required for the activation of the ATR-Claspin-Chk1 and ATR-H2AX pathways following UV treatment, and the noted abrogation of the DNA damage checkpoint in the MTA1-depleted cells may be, at least in part, a consequence of dysregulation of the expression of these two pathways. These findings suggest that, in addition to its role in the repair of double strand breaks caused by ionizing radiation, MTA1 also participates in the UV-induced ATR-mediated DNA damage checkpoint pathway.  相似文献   

9.
Cell cycle checkpoints induced by DNA damage play an integral role in preservation of genomic stability by allowing cells to limit the propagation of deleterious mutations. The retinoblastoma tumor suppressor (RB) is crucial for the maintenance of the DNA damage checkpoint function because it elicits cell cycle arrest in response to a variety of genotoxic stresses. Although sporadic loss of RB is characteristic of most cancers and results in the bypass of the DNA damage checkpoint, the consequence of RB loss upon chemotherapeutic responsiveness has been largely uninvestigated. Here, we employed a conditional knockout approach to ablate RB in adult fibroblasts. This system enabled us to examine the DNA damage response of adult cells following acute RB deletion. Using this system, we demonstrated that loss of RB disrupted the DNA damage checkpoint elicited by either cisplatin or camptothecin exposure. Strikingly, this bypass was not associated with enhanced repair, but rather the accumulation of phosphorylated H2AX (γH2AX) foci, which indicate DNA double-strand breaks. The formation of γH2AX foci was due to ongoing replication following chemotherapeutic treatment in the RB-deficient cells. Additionally, peak γH2AX accumulation occurred in S-phase cells undergoing DNA replication in the presence of damage, and these γH2AX foci co-localized with replication foci. These results demonstrate that acute RB loss abrogates DNA damage-induced cell cycle arrest to induce γH2AX foci formation. Thus, secondary genetic lesions induced by RB loss have implications for the chemotherapeutic response and the development of genetic instability.  相似文献   

10.
Humanblood leukocytes exposed to X-rays were immersed in an agarose microgel on a slide, extensively deproteinized, and electrophoresed under neutral conditions. Following this single-cell gel electrophoresis assay, characteristics of DNA migration (i.e., area of the comet) are related to the DNA double-strand breaks (dsbs) yield. After electrophoresis, comets were briefly incubated in an alkaline unwinding solution, transforming DNA breaks and alkali-labile sites into restricted single-stranded DNA (ssDNA) motifs. These motifs behave as target sites for hybridization with a whole genome probe, following the DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure. As DNA breakage increases with dose, more ssDNA is produced in the comet by the alkali and more DNA probe hybridizes, resulting in an increase in the mean fluorescence intensity. Since radiation-induced DNA single-strand breaks (ssbs) are far more frequent than dsbs, the mean fluorescence intensity of the DBD-FISH signal from the comet is related to the ssb level, whereas the surface area of the same comet signal is indicative of the dsb yield. Thus, both DNA break types may be simultaneously analyzed in the same cell. This was confirmed in a repair assay performing the DBD-FISH on neutral comets from a human cell line defective in the repair of dsbs. Otherwise, treatment with hydrogen peroxide, a main inducer of ssbs, increased the mean fluorescence intensity, but not the surface, of X-ray-exposed human leukocytes.  相似文献   

11.
Xu B  Sun Z  Liu Z  Guo H  Liu Q  Jiang H  Zou Y  Gong Y  Tischfield JA  Shao C 《PloS one》2011,6(4):e18618

Background

Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (γ-H2AX). One subclass of MN contains massive and uniform γ-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress.

Principal Findings

We observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against γ-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-γ–H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-γ–H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-γ–H2AX (−), MN that were devoid of uniform γ-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-γ–H2AX (−). The frequency of MN-γ–H2AX (+), but not that of MN-γ–H2AX (−), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-γ–H2AX (+) and MN-γ–H2AX (−).

Conclusions/Significance

A subclass of MN, MN-γ–H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their γ-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants.  相似文献   

12.
Several types of DNA lesion are induced after ionizing irradiation (IR) of which double strand breaks (DSBs) are expected to be the most lethal, although single strand breaks (SSBs) and DNA base damages are quantitatively in the majority. Proteins of the base excision repair (BER) pathway repair these numerous lesions. DNA polymerase beta has been identified as a crucial enzyme in BER and SSB repair (SSBR). We showed previously that inhibition of BER/SSBR by expressing a dominant negative DNA polymerase beta (polβDN) resulted in radiosensitization. We hypothesized increased kill to result from DSBs arising from unrepaired SSBs and BER intermediates. We find here higher numbers of IR-induced chromosome aberrations in polβDN expressing cells, confirming increased DSB formation. These aberrations did not result from changes in DSB induction or repair of the majority of lesions. SSB conversion to DSBs has been shown to occur during replication. We observed an increased induction of chromatid aberrations in polβDN expressing cells after IR, suggesting such a replication-dependence of secondary DSB formation. We also observed a pronounced increase of chromosomal deletions, the most likely cause of the increased kill. After H2O2 treatment, polβDN expression only resulted in increased chromatid (not chromosome) aberrations. Together with the lack of sensitization to H2O2, these data further suggest that the additional secondarily induced lethal DSBs resulted from repair attempts at complex clustered damage sites, unique to IR. Surprisingly, the polβDN induced increase in residual γH2AX foci number was unexpectedly low compared with the radiosensitization or induction of aberrations. Our data thus demonstrate the formation of secondary DSBs that are reflected by increased kill but not by residual γH2AX foci, indicating an escape from γH2AX-mediated DSB repair. In addition, we show that in the polβDN expressing cells secondary DSBs arise in a radiation-specific and partly replication-dependent manner.  相似文献   

13.
DNA double-strand breaks (DSB) are considered as the most deleterious DNA lesions, and their repair is further complicated by increasing damage complexity. However, the molecular effects of clustered lesions are yet not fully understood. As the locally restricted phosphorylation of H2AX to form γH2AX is a key step in facilitating efficient DSB repair, we investigated this process after localized induction of clustered damage by ionizing radiation. We show that in addition to foci at damaged sites, H2AX is also phosphorylated in undamaged chromatin over the whole-cell nucleus in human and rodent cells, but this is not related to apoptosis. This pan-nuclear γH2AX is mediated by the kinases ataxia telangiectasia mutated and DNA-dependent protein kinase (DNA–PK) that also phosphorylate H2AX at DSBs. The pan-nuclear response is dependent on the amount of DNA damage and is transient even under conditions of impaired DSB repair. Using fluorescence recovery after photobleaching (FRAP), we found that MDC1, but not 53BP1, binds to the nuclear-wide γH2AX. Consequently, the accumulation of MDC1 at DSBs is reduced. Altogether, we show that a transient dose-dependent activation of the kinases occurring on complex DNA lesions leads to their nuclear-wide distribution and H2AX phosphorylation, yet without eliciting a full pan-nuclear DNA damage response.  相似文献   

14.
Exposure to solar UV radiation gives rise to mutations that may lead to skin cancer. UVA (320-340 nm) constitutes the large majority of solar UV radiation but is less effective than UVB (290-320 nm) at damaging DNA. Although UVA has been implicated in photocarcinogenesis, its contribution to sunlight mutagenesis has not been elucidated, and DNA damage produced by UVA remains poorly characterized. We employed HPLC-MS/MS and alkaline agarose gel electrophoresis in conjunction with the use of specific DNA repair proteins to determine the distribution of the various classes and types of DNA lesions, including bipyrimidine photoproducts, in Chinese hamster ovary cells exposed to pure UVA radiation, as well as UVB and simulated sunlight (lambda > 295 nm) for comparison. At UVA doses compatible with human exposure, oxidative DNA lesions are not the major type of damage induced by UVA. Indeed, single-strand breaks, oxidized pyrimidines, oxidized purines (essentially 8-oxo-7,8-dihydroguanine), and cyclobutane pyrimidine dimers (CPDs) are formed in a 1:1:3:10 ratio. In addition, we demonstrate that, in contrast to UVB and sunlight, UVA generates CPDs with a large predominance of TT CPDs, which strongly suggests that they are formed via a photosensitized triplet energy transfer. Moreover, UVA induces neither (6-4) photoproducts nor their Dewar isomers via direct absorption. We also show that UVA photons contained in sunlight, rather than UVB, are implicated in the photoisomerization of (6-4) photoproducts, a quickly repaired damage, into poorly repaired and highly mutagenic Dewar photoproducts. Altogether, our data shed new light on the deleterious effect of UVA.  相似文献   

15.
The effect of 125I-decay on cell lethality, and induction of chromosome and DNA damage, was studied in synchronous non-cycling, G1-phase CHO-cells. For this purpose a population of mitotic cells was allowed to divide and progress through S-phase in the presence of 125IdUrd. Cells were subsequently transferred to conditioned medium (C-med) obtained from plateau-phase cultures that allowed cells to divide and accumulate in G1-phase in a non-cycling state. To accumulate 125I-induced damage, cells were kept frozen at -80 degrees C. Freezing was carried out using a new method that optimally preserves cell integrity. After various times of cold storage, cells were thawed and assayed for survival, DNA and chromosome damage, either immediately or after various times in C-med. Neutral filter elution was used to assay repair of DNA double-strand breaks (dsbs), and premature chromosome condensation was used to assay repair of chromosome fragments and induction of ring chromosomes. The results indicate very little repair at the cell survival level (repair of PLD). At the DNA level an efficient repair of DNA dsbs was observed, with kinetics similar to those observed after exposure to X-rays. At the chromosome level a fast repair of prematurely condensed chromosome fragment was observed, with a concomitant increase in the number of ring chromosomes induced. The repair kinetics of chromosome fragments and DNA dsbs were very similar, suggesting that DNA dsbs may underlie chromosome fragmentation.  相似文献   

16.
In addition to double- and single-strand DNA breaks and isolated base modifications, ionizing radiation induces clustered DNA damage, which contains two or more lesions closely spaced within about two helical turns on opposite DNA strands. Post-irradiation repair of single-base lesions is routinely performed by base excision repair and a DNA strand break is involved as an intermediate. Simultaneous processing of lesions on opposite DNA strands may generate double-strand DNA breaks and enhance nonhomologous end joining, which frequently results in the formation of deletions. Recent studies support the possibility that the mechanism of base excision repair contributes to genome stability by diminishing the formation of double-strand DNA breaks during processing of clustered lesions.  相似文献   

17.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

18.
Bistranded complex DNA damage, i.e., double-strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions, is hypothesized to challenge the repair mechanisms of the cell and consequently the genomic integrity. The oxidative clustered DNA lesions may be persistent and may accumulate in human cancer cells for long times after irradiation. To evaluate the detection and possible accumulation of oxidative clustered DNA lesions in leukemia cells exposed to doses equivalent to those used in radiotherapy, we measured the induction of DSBs and three different types of oxidative clustered DNA lesions in NALM-6 cells, a human acute lymphoblastic leukemia (ALL) pre-B cell line, after exposure to (137)Cs gamma rays. For the detection and measurement of DSBs and oxidative clustered DNA lesions, we used an adaptation of the neutral comet assay (single-cell gel electrophoresis) using E. coli repair enzymes (Endo IV, Fpg and Endo III) as enzymatic probes. We found a linear dose response for the induction of DSBs and oxidative clustered DNA lesions. Clustered DNA lesions were more prevalent than prompt DSBs. For each DSB induced by radiation, approximately 2.5 oxidative clustered DNA lesions were detected. To our knowledge, this is the first study to demonstrate the detection and linear induction of oxidative clustered DNA lesions with radiation dose in an ALL cell line. These results point to the biological significance of clustered DNA lesions.  相似文献   

19.
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles.  相似文献   

20.
The bacterium Deinococcus (formerly Micrococcus) radiodurans and other members of the eubacterial family Deinococaceae are extremely resistant to ionizing radiation and many other agents that damage DNA. Stationary phase D. radiodurans exposed to 1.0-1.5 Mrad γ-irradiation sustains >120 DNA double-strand breaks (dsbs) per chromosome; these dsbs are mended over a period of hours with 100% survival and virtually no mutagenesis. This contrasts with nearly all other organisms in which just a few ionizing radiation induced-dsbs per chromosome are lethal. In this article we present an hypothesis that resistance of D. radiodurans to ionizing radiation and its ability to mend radiation-induced dsbs are due to a special form of redundancy wherein chromosomes exist in pairs, linked to each other by thousands of four-stranded (Holliday) junctions. Thus, a dsb is not a lethal event because the identical undamaged duplex is nearby, providing an accurate repair template. As addressed in this article, much of what is known about D. radiodurans suggests that it is particularly suited for this proposed novel form of DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号