首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2 ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2 , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1 Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1 ; however, deleting both genes did not rescue the pah1 Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity.  相似文献   

2.
Yeast vacuole fusion requires the activation of cis‐SNARE complexes through priming carried out by Sec18p/N‐ethylmaleimide sensitive factor and Sec17p/α‐SNAP. The association of Sec18p with vacuolar cis‐SNAREs is regulated in part by phosphatidic acid (PA) phosphatase production of diacylglycerol (DAG). Inhibition of PA phosphatase activity blocks the transfer of membrane‐associated Sec18p to SNAREs. Thus, we hypothesized that Sec18p associates with PA‐rich membrane microdomains before transferring to cis‐SNARE complexes upon PA phosphatase activity. Here, we examined the direct binding of Sec18p to liposomes containing PA or DAG. We found that Sec18p preferentially bound to liposomes containing PA compared with those containing DAG by approximately fivefold. Additionally, using a specific PA‐binding domain blocked Sec18p binding to PA‐liposomes and displaced endogenous Sec18p from isolated vacuoles. Moreover, the direct addition of excess PA blocked the priming activity of isolated vacuoles in a manner similar to chemically inhibiting PA phosphatase activity. These data suggest that the conversion of PA to DAG facilitates the recruitment of Sec18p to cis‐SNAREs. Purified vacuoles from yeast lacking the PA phosphatase Pah1p showed reduced Sec18p association with cis‐SNAREs and complementation with plasmid‐encoded PAH1 or recombinant Pah1p restored the interaction. Taken together, this demonstrates that regulating PA concentrations by Pah1p activity controls SNARE priming by Sec18p.   相似文献   

3.
Legionella pneumophila, the causative agent of Legionnaires'' disease, is an intracellular human pathogen that utilizes the Icm/Dot type IVB secretion system to translocate a large repertoire of effectors into host cells. To find coregulated effectors, we performed a bioinformatic genomic screen with the aim of identifying effector-encoding genes containing putative CsrA regulatory elements. The regulation of these genes by the LetAS-RsmYZ-CsrA regulatory cascade was experimentally validated by examining their levels of expression in deletion mutants of relevant regulators and by site-directed mutagenesis of the putative CsrA sites. These analyses resulted in the identification of 26 effector-encoding genes regulated by the LetAS-RsmYZ-CsrA regulatory cascade, all of which were expressed at higher levels during the stationary phase. To determine if any of these effectors is involved in modulating the secretory pathway, they were overexpressed in wild-type yeast as well as in a yeast sec22 deletion mutant, which encodes an R-SNARE that participates in the endoplasmic reticulum (ER)-Golgi trafficking. This examination identified many novel LetAS-RsmYZ-CsrA regulated effectors which are involved in this process. To further characterize the role of these 26 effectors in vesicular trafficking, they were examined in yeast arf and arl deletion mutants, which encode small GTPases that regulate ER-Golgi trafficking. This analysis revealed that the effectors examined manipulate different processes of the secretory pathway. Collectively, our results demonstrate that several of the L. pneumophila effectors which are coregulated in the bacterial cell are involved in the modulation of the same eukaryotic pathway.  相似文献   

4.
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.  相似文献   

5.
6.
Pah1 phosphatidate (PA) phosphatase plays a major role in triacylglycerol synthesis in Saccharomyces cerevisiae by producing its precursor diacylglycerol and concurrently regulates de novo phospholipid synthesis by consuming its precursor PA. The function of Pah1 requires its membrane localization, which is controlled by its phosphorylation state. Pah1 is dephosphorylated by the Nem1-Spo7 protein phosphatase, whereas its phosphorylation occurs by multiple known and unknown protein kinases. In this work, we show that Rim11, a yeast homolog of mammalian glycogen synthase kinase-3β, is a protein kinase that phosphorylates Pah1 on serine (Ser12, Ser602, and Ser818) and threonine (Thr163, Thr164, Thr522) residues. Enzymological characterization of Rim11 showed that its Km for Pah1 (0.4 μM) is similar to those of other Pah1-phosphorylating protein kinases, but its Km for ATP (30 μM) is significantly higher than those of these same kinases. Furthermore, we demonstrate Rim11 phosphorylation of Pah1 does not require substrate prephosphorylation but was increased ∼2-fold upon its prephosphorylation by the Pho85-Pho80 protein kinase. In addition, we show Rim11-phosphorylated Pah1 was a substrate for dephosphorylation by Nem1-Spo7. Finally, we demonstrate the Rim11 phosphorylation of Pah1 exerted an inhibitory effect on its PA phosphatase activity by reduction of its catalytic efficiency. Mutational analysis of the major phosphorylation sites (Thr163, Thr164, and Ser602) indicated that Rim11-mediated phosphorylation at these sites was required to ensure Nem1-Spo7-dependent localization of the enzyme to the membrane. Overall, these findings advance our understanding of the phosphorylation-mediated regulation of Pah1 function in lipid synthesis.  相似文献   

7.
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1–Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.  相似文献   

8.
Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires'' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.  相似文献   

9.
While yeast has been extensively used as a model system for analysing protein–protein and genetic interactions, in the context of bacterial pathogenesis, the use of yeast‐based tools has largely been limited to identifying interactions between pathogen effectors and host targets. In their recent work, Ensminger and colleagues (Urbanus et al, 2016 ) use the combinatorial power of yeast genetics to systematically screen all known Legionella pneumophila effector proteins for effector–effector interactions. They provide new insights into how bacterial effectors balance host cell perturbation and describe mechanisms used by “meta‐effectors” to directly modulate target effector activity.  相似文献   

10.
11.
The lipid composition of biological membranes is crucial for many aspects of organelle function, including growth, signalling, and transport. Lipins represent a novel family of lipid phosphatases that dephosphorylate phosphatidic acid (PA) to produce diacylglycerol (DAG), and perform key functions in phospholipid and triacylglycerol biosynthesis and gene expression. In addition to its role in lipid biosynthesis, the yeast lipin Pah1p and its regulators are required for the maintenance of a spherical nuclear shape. This review summarizes recent advances in our understanding of the yeast lipin Pah1p and highlights the possible roles of phospholipid metabolism in nuclear membrane biogenesis.  相似文献   

12.
Phospholipase D 2 (PLD2) is the major PLD isozyme associated with the cardiac sarcolemmal (SL) membrane. Hydrolysis of SL phosphatidylcholine (PC) by PLD2 produces phosphatidic acid (PA), which is then converted to 1,2 diacylglycerol (DAG) by the action of phosphatidate phosphohydrolase type 2 (PAP2). In view of the role of both PA and DAG in the regulation of Ca2+ movements and the association of abnormal Ca2+ homeostasis with congestive heart failure (CHF), we examined the status of both PLD2 and PAP2 in SL membranes in the infarcted heart upon occluding the left coronary artery in rats for 1, 2, 4, 8 and 16 weeks. A time-dependent increase in both SL PLD2 and PAP2 activities was observed in the non-infarcted left ventricular tissue following myocardial infarction (MI); however, the increase in PAP2 activity was greater than that in PLD2 activity. Furthermore, the contents of both PA and PC were reduced, whereas that of DAG was increased in the failing heart SL membrane. Treatment of the CHF animals with imidapril, an angiotensin-converting enzyme (ACE) inhibitor, attenuated the observed changes in heart function, SL PLD2 and PAP2 activities, as well as SL PA, PC and DAG contents. The results suggest that heart failure is associated with increased activities of both PLD2 and PAP2 in the SL membrane and the beneficial effect of imidapril on heart function may be due to its ability to prevent these changes in the phospholipid signaling molecules in the cardiac SL membrane.  相似文献   

13.
The Legionella pneumophila Dot/Icm type IV secretion system is essential for the biogenesis of a phagosome that supports bacterial multiplication, most likely via the functions of its protein substrates. Recent studies indicate that fundamental cellular processes, such as vesicle trafficking, stress response, autophagy and cell death, are modulated by these effectors. However, how each translocated protein contributes to the modulation of these pathways is largely unknown. In a screen to search substrates of the Dot/Icm transporter that can cause host cell death, we identified a gene whose product is lethal to yeast and mammalian cells. We demonstrate that this protein, called SidI, is a substrate of the Dot/Icm type IV protein transporter that targets the host protein translation process. Our results indicate that SidI specifically interacts with eEF1A and eEF1Bγ, two components of the eukaryotic protein translation elongation machinery and such interactions leads to inhibition of host protein synthesis. Furthermore, we have isolated two SidI substitution mutants that retain the target binding activity but have lost toxicity to eukaryotic cells, suggesting potential biochemical effect of SidI on eEF1A and eEF1Bγ. We also show that infection by L. pneumophila leads to eEF1A‐mediated activation of the heat shock regulatory protein HSF1 in a virulence‐dependent manner and deletion of sidI affects such activation. Moreover, similar response occurred in cells transiently transfected to express SidI. Thus, inhibition of host protein synthesis by specific effectors contributes to the induction of stress response in L. pneumophila‐infected cells.  相似文献   

14.
Accumulating evidence suggests that phosphatidic acid (PA) plays a pivotal role in the plant's response to environmental signals. Besides phospholipase D (PLD) activity, PA can also be generated by diacylglycerol kinase (DGK). To establish which metabolic route is activated, a differential 32P-radiolabelling protocol can be used. Based on this, and more recently on reverse-genetic approaches, DGK has taken center stage, next to PLD, as a generator of PA in biotic and abiotic stress responses. The DAG substrate is generally thought to be derived from PI-PLC activity. The model plant system Arabidopsis thaliana has 7 DGK isozymes, two of which, AtDGK1 and AtDGK2, resemble mammalian DGK?, containing a conserved kinase domain, a transmembrane domain and two C1 domains. The other ones have a much simpler structure, lacking the C1 domains, not matched in animals. Several protein targets have now been discovered that bind PA. Whether the PA molecules engaged in these interactions come from PLD or DGK remains to be elucidated.  相似文献   

15.
The facultative intracellular pathogen Legionella pneumophila, the causative agent of Legionnaires disease, infects and replicates within human alveolar macrophages. L. pneumophila delivers almost 300 effector proteins into the besieged host cell that alter signaling cascades and create conditions that favor intracellular bacterial survival. In order for the effectors to accomplish their intracellular mission, their activity needs to be specifically directed toward the correct host cell protein or target organelle. Here, we show that the L. pneumophila effector GobX possesses E3 ubiquitin ligase activity that is mediated by a central region homologous to mammalian U-box domains. Furthermore, we demonstrate that GobX exploits host cell S-palmitoylation to specifically localize to Golgi membranes. The hydrophobic palmitate moiety is covalently attached to a cysteine residue at position 175, which is part of an amphipathic α-helix within the C-terminal region of GobX. Site-directed mutagenesis of cysteine 175 or residues on the hydrophobic face of the amphipathic helix strongly attenuated palmitoylation and Golgi localization of GobX. Together, our study provides evidence that the L. pneumophila effector GobX exploits two post-translational modification pathways of host cells, ubiquitination and S-palmitoylation.  相似文献   

16.
Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.  相似文献   

17.
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.  相似文献   

18.
Legionella pneumophila is an intracellular human pathogen that utilizes the Icm/Dot type IVB secretion system to translocate a large repertoire of effectors into host cells. For most of these effectors, there is no information regarding their regulation. Therefore, the aim of this study was to examine the involvement of the three L. pneumophila Fis homologs in the regulation of effector-encoding genes. Deletion mutants constructed in the genes encoding the three Fis regulators revealed that Fis1 (lpg0542 gene) and Fis3 (lpg1743) but not Fis2 (lpg1370) are partially required for intracellular growth of L. pneumophila in Acanthamoeba castellanii. To identify pathogenesis-related genes directly regulated by Fis, we established a novel in vivo system which resulted in the discovery of numerous effector-encoding genes directly regulated by Fis. Further examination of these genes revealed that Fis1 and Fis3 repress the level of expression of effector-encoding genes during exponential phase. Three groups of effector-encoding genes were identified: (i) effectors regulated mainly by Fis1, (ii) effectors regulated mainly by Fis3, and (iii) effectors regulated by both Fis1 and Fis3. Examination of the upstream regulatory region of all of these effector-encoding genes revealed multiple putative Fis regulatory elements, and site-directed mutagenesis confirmed that a few of these sites constitute part of a repressor binding element. Furthermore, gel mobility shift assays demonstrated the direct relation between the Fis1 and Fis3 regulators and these regulatory elements. Collectively, our results demonstrate for the first time that two of the three L. pneumophila Fis regulators directly repress the expression of Icm/Dot effector-encoding genes.  相似文献   

19.
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors.  相似文献   

20.
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its derivatives diphosphoinositol phosphates (DPIPs) play key signaling and regulatory roles. However, a direct function of these molecules in lipid and membrane homeostasis remains obscure. Here, we have studied the cold tolerance phenotype of yeast cells lacking the Inp51-mediated phosphoinositide-5-phosphatase. Genetic and biochemical approaches showed that increased metabolism of PI(4,5)P2 reduces the activity of the Pho85 kinase by increasing the levels of the DPIP isomer 1-IP7. This effect was key in the cold tolerance phenotype. Indeed, pho85 mutant cells grew better than the wild-type at 15 °C, and lack of this kinase abolished the inp51-mediated cold phenotype. Remarkably, reduced Pho85 function by loss of Inp51 affected the activity of the Pho85-regulated target Pah1, the yeast phosphatidate phosphatase. Cells lacking Inp51 showed reduced Pah1 abundance, derepression of an INO1-lacZ reporter, decreased content of triacylglycerides and elevated levels of phosphatidate, hallmarks of the pah1 mutant. However, the inp51 phenotype was not associated to low Pah1 activity since deletion of PAH1 caused cold sensitivity. In addition, the inp51 mutant exhibited features not shared by pah1, including a 40%-reduction in total lipid content and decreased membrane fluidity. These changes may influence the activity of membrane-anchored and/or associated proteins since deletion of INP51 slows down the transit to the vacuole of the fluorescent dye FM4-64. In conclusion, our work supports a model in which changes in the PI(4,5)P2 pool affect the 1-IP7 levels modulating the activity of Pho85, Pah1 and likely additional Pho85-controlled targets, and regulate lipid composition and membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号