首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms that regulate cell fate within the pronephros are poorly understood but are important for the subsequent development of the urogenital system and show many similarities to nephrogenesis in the definitive kidney. Dynamic expression of Notch-1, Serrate-1, and Delta-1 in the developing Xenopus pronephros suggests a role for this pathway in cell fate segregation. Misactivation of Notch signaling using conditionally active forms of either Notch-1 or RBP-J/Su(H) proteins prevented normal duct formation and the proper expression of genetic markers of duct cell differentiation. Inhibition of endogenous Notch signaling elicited the opposite effect. Taken together with the mRNA expression patterns, these data suggest that endogenous Notch signaling functions to inhibit duct differentiation in the dorsoanterior region of the anlage where cells are normally fated to form tubules. In addition, elevated Notch signaling in the pronephric anlage both perturbed the characteristic pattern of the differentiated tubule network and increased the expression of early markers of pronephric precursor cells, Pax-2 and Wilms' tumor suppressor gene (Wt-1). We propose that Notch signaling plays a previously unrecognized role in the early selection of duct and tubule cell fates as well as functioning subsequently to control tubule cell patterning and development.  相似文献   

2.
In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryo in vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensor in vitro is highly similar to its undisturbed in vivo counterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, both in vivo and in vitro, after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two‐celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryo in vivo is actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage.  相似文献   

3.
WTX is an X-linked tumor suppressor targeted by somatic mutations in Wilms tumor, a pediatric kidney cancer, and by germline inactivation in osteopathia striata with cranial sclerosis, a bone overgrowth syndrome. Here, we show that Wtx deletion in mice causes neonatal lethality, somatic overgrowth, and malformation of multiple mesenchyme-derived tissues, including bone, fat, kidney, heart, and spleen. Inactivation of Wtx at different developmental stages and in primary mesenchymal progenitor cells (MPCs) reveals that bone mass increase and adipose tissue deficiency are due to altered lineage fate decisions coupled with delayed terminal differentiation. Specification defects in MPCs result from aberrant β-catenin activation, whereas alternative pathways contribute to the subsequently delayed differentiation of lineage-restricted cells. Thus, Wtx is a regulator of MPC commitment and differentiation with stage-specific functions in inhibiting canonical Wnt signaling. Furthermore, the constellation of anomalies in Wtx null mice suggests that this tumor suppressor broadly regulates MPCs in multiple tissues.  相似文献   

4.
The vertebrate pituitary gland is a key endocrine control organ that contains six distinct hormone secreting cell types. In this study, we analyzed the role of direct cell-to-cell Delta-Notch signaling in zebrafish anterior pituitary cell type specification. We demonstrate that initial formation of the anterior pituitary placode is independent of Notch signaling. Later however, loss of Notch signaling in mind bomb (mib) mutant embryos or by DAPT treatment leads to increased numbers of lactotropes and loss of corticotropes in the anterior pars distalis (APD), increased number of thyrotropes and loss of somatotrope cell types in the posterior pars distalis (PPD), and fewer melanotropes in the posterior region of the adenohypophysis, the pars intermedia (PI). Conversely, Notch gain of function leads to the opposite result, loss of lactotrope and thyrotrope cell specification, and an increased number of corticotropes, melanotropes, and gonadotropes in the pituitary. Our results suggest that Notch acts on placodal cells, presumably as a permissive signal, to regulate progenitor cell specification to hormone secreting cell types. We propose that Notch mediated lateral inhibition regulates the relative numbers of specified hormone cell types in the three pituitary subdomains.  相似文献   

5.
The conserved adaptor protein Numb is an intrinsic cell fate determinant that functions by antagonizing Notch-mediated signal transduction. The Notch family of membrane receptors controls cell survival and cell fate determination in a variety of organ systems and species. Recent studies have identified a role for mammalian Notch-1 signals at multiple stages of T lymphocyte development. We have examined the role of mammalian Numb (mNumb) as a Notch regulator and cell fate determinant during T cell development. Transgenic overexpression of mNumb under the control of the Lck proximal promoter reduced expression of several Notch-1 target genes, indicating that mNumb antagonizes Notch-1 signaling in vivo. However, thymocyte development, cell cycle, and survival were unperturbed by mNumb overexpression, even though transgenic Numb was expressed at an early stage in thymocyte development (CD4(-)CD8(-)CD3(-) cells that were CD44(+)CD25(+) or CD44(-)CD25(+); double-negative 2/3). Moreover, bone marrow from mNumb transgenic mice showed no defects in thymopoiesis in competitive repopulation experiments. Our results suggest that mNumb functions as a Notch-1 antagonist in immature thymocytes, but that suppression of Notch-1 signaling at this stage does not alter gammadelta/alphabeta or CD4/CD8 T cell fate specification.  相似文献   

6.
7.
During Drosophila sensory organ precursor cell development, Numb segregates asymmetrically and functions as a cell fate determinant. Recent work now demonstrates in vivo that Numb inactivates Notch by promoting its endocytosis.  相似文献   

8.
9.
Notch is a transmembrane receptor that mediates local cell-cell communication and coordinates a signaling cascade present in all animal species studied to date. Notch signaling is used widely to determine cell fates and to regulate pattern formation; its dysfunction results in a tremendous variety of developmental defects and adult pathologies. This primer describes the mechanism of Notch signal transduction and how it is used to control the formation of biological patterns.  相似文献   

10.
During the development of a given organ, tissue growth and fate specification are simultaneously controlled by the activity of a discrete number of signalling molecules. Here, we report that these two processes are extraordinarily coordinated in the Drosophila wing primordium, which extensively proliferates during larval development to give rise to the dorsal thoracic body wall and the adult wing. The developmental decision between wing and body wall is defined by the opposing activities of two secreted signalling molecules, Wingless and the EGF receptor ligand Vein. Notch signalling is involved in the determination of a variety of cell fates, including growth and cell survival. We present evidence that growth of the wing primordium mediated by the activity of Notch is required for wing fate specification. Our data indicate that tissue size modulates the activity range of the signalling molecules Wingless and Vein. These results highlight a crucial role of Notch in linking proliferation and fate specification in the developing wing primordium.  相似文献   

11.
Runx1-deficient mice die around embryonic day 11.5 due to impaired hematopoiesis. This early death prevents the analysis of the role of Runx1 in the development of sensory ganglia. To overcome the early embryonic lethality, we adopted a new approach to utilize transgenic Runx1-deficient mice in which hematopoietic cells are selectively rescued by Runx1 expression under the control of GATA-1 promoter. In Runx1-deficient mice, the total number of dorsal root ganglion (DRG) neurons was increased, probably because of an increased proliferative activity of DRG progenitor cells and decreased apoptosis. In the mutant DRG, TrkA-positive neurons and peptidergic neurons were increased, while c-ret-positive neurons were decreased. Axonal projections were also altered, in that both central and peripheral projections of CGRP-positive axons were increased. In the dorsal horn of the spinal cord, projections of CGRP-positive axons expanded to the deeper layer, IIi, from the normal terminal area, I/IIo. Our results suggest that Runx1 is involved in the cell fate specification of cutaneous neurons, as well as their projections to central and peripheral targets.  相似文献   

12.
13.
Notch is a key regulator of vertebrate neurogenesis and the cytoplasmic adaptor protein Numb is a modulator of the Notch signaling pathway. To address the role of murine Numb in development of the central nervous system, we used a conditional gene ablation approach. We show that Numb is involved in the maturation of cerebellar granule cells. Although the specification of neural cell fates in the cerebellum is not affected in the absence of Numb, the transition from a mitotic progenitor to a mature granule cell is aberrant and migration of postmitotic granule cells to the internal granule cell layer is delayed. In some animals, this results in a complete agenesis of granule cells and a strong ataxia. We confirmed these findings in vitro and found that Numb-deficient cerebellar progenitor cells show a marked delay in granule cell maturation. Our results suggest that Numb plays a role in the transition of a mitotic progenitor to a fully differentiated granule cell in the cerebellum. In addition, the maturation of Purkinje cells is also delayed in Numb-deficient mice.  相似文献   

14.
Although FGF signaling plays an integral role in the migration and patterning of mesoderm at gastrulation, the mechanism and downstream targets of FGF activity have remained elusive. Here, we demonstrate that FGFR1 orchestrates the epithelial to mesenchymal transition and morphogenesis of mesoderm at the primitive streak by controlling Snail and E-cadherin expression. Furthermore, we show that FGFR1 functions in mesoderm cell fate specification by positively regulating Brachyury and Tbx6 expression. Finally, we provide evidence that the attenuation of Wnt3a signaling observed in Fgfr1 -/- embryos can be rescued by lowering E-cadherin levels. We propose that modulation of cytoplasmic beta-catenin levels, associated with FGF-induced downregulation of E-cadherin, provides a molecular link between FGF and Wnt signaling pathways at the streak.  相似文献   

15.
Notch signaling is involved both in development as well as in multiple cancers, including pancreatic cancer. Its activity has been implicated early in pancreatic disease, shown to be essential for a pre-cancerous transdifferentiation event known as acinar-to-ductal metaplasia (ADM). Recently, we have shown that matrix metalloproteinase-7 (MMP-7) is essential for ADM by activating the Notch pathway, challenging the notion that ADAM metalloproteinases are the sole enzymes responsible for initiating Notch activity. In ADM, ADAMs do not compensate for the absence of MMP-7 activity. We propose that during development and stem cell maintenance, Notch activation is highly regulated by the binding of Notch ligand to receptor and employs the ubiquitously-expressed ADAMs, whereas in a disease state, high levels of induced MMP-7 activity can lead to aberrant ligand-independent Notch activation. Therefore, if ADM or PDA is to be blocked by inhibiting Notch, treatment with ADAM-specific inhibitors alone will be inadequate. Other approaches for Notch inhibition, including by γ-secretase and broad-spectrum MMP inhibitors, will be discussed.  相似文献   

16.
17.
The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. The intestinal epithelium is organized into villus and crypt, and a group of intestinal stem cells located at the base of crypt are responsible for this constant self-renewal throughout the life. Identification of the intestinal stem cell marker Lgr5, isolation and in vitro culture of Lgr5+ intestinal stem cells and the use of transgenic mouse models have significantly facilitated the studies of intestinal stem cell homeostasis and differentiation, therefore greatly expanding our knowledge of the regulatory mechanisms underlying the intestinal stem cell fate determination. In this review, we summarize the current understanding of how signals of Wnt, BMP, Notch and EGF in the stem cell niche modulate the intestinal stem cell fate.  相似文献   

18.
19.
《Developmental cell》2023,58(2):94-109.e6
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

20.
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cell fate. Sensory organ precursors (SOPs) also segregate Numb asymmetrically at cell division. Numb functions to inhibit Notch signaling and to specify the fates of progenies of the SOP that constitute the cellular components of the adult sensory organ. We report here that, in contrast to the embryonic neuroblast, lgl is not required for asymmetric localization of Numb in the dividing SOP. Nevertheless, mosaic analysis reveals that lgl is required for cell fate specification within the SOP lineage; SOPs lacking Lgl fail to specify internal neurons and glia. Epistasis studies suggest that Lgl acts to inhibit Notch signaling by functioning downstream or in parallel with Numb. These findings uncover a previously unknown function of Lgl in the inhibition of Notch and reveal different modes of action by which Lgl can influence cell fate in the neuroblast and SOP lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号