首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C–C chemokine receptor type 1 (CCR1) is a chemokine receptor with seven transmembrane helices and it belongs to the G-Protein Coupled receptor (GPCR) family. It plays an important role in rheumatoid arthritis, organ transplant rejection, Alzheimer’s disease and also causes inflammation. Because of its role in disease processes, CCR1 is considered to be an important drug target. In the present study, we have performed three dimensional Quantitative Structure activity relationship (3D-QSAR) studies on a series of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanone derivatives targeting CCR1. Homology modeling of CCR1 was performed based on a template structure (4EA3) which has a high sequence identity and resolution. The highest active molecule was docked into this model. Ligand-based and Receptor-based quantitative structure–activity relationship (QSAR) study was performed and CoMFA models with reasonable statistics was developed for both ligand-based (q2 = 0.606; r2 = 0.968) and receptor-guided (q2 = 0.640; r2 = 0.932) alignment methods. Contour map analyses identified favorable regions for high affinity binding. The docking results highlighted the important active site residues. Tyr113 was found to interact with the ligand through hydrogen bonding. This residue has been considered responsible for anchoring ligands inside the active site. Our results could also be helpful to understand the inhibitory mechanism of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanone derivatives thereby to design more effective ligands in the future.  相似文献   

2.
Inorganic pyrophosphatases are potential targets for the development of novel antibacterial agents. A pyrophosphatase-coupled high-throughput screening assay intended to detect o-succinyl benzoic acid coenzyme A (OSB CoA) synthetase inhibitors led to the unexpected discovery of a new series of novel inorganic pyrophosphatase inhibitors. Lead optimization studies resulted in a series of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazine derivatives that were prepared by an efficient synthetic pathway. One of the tetracyclic triazine analogues 22h displayed promising antibiotic activity against a wide variety of drug-resistant Staphylococcus aureus strains, as well as activity versus Mycobacterium tuberculosis and Bacillus anthracis, at a concentration that was not cytotoxic to mammalian cells.  相似文献   

3.
A group of 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (12af) was synthesized and evaluated as anti-inflammatory agents. While all the compounds (20 mg/kg) showed significant anti-inflammatory activity after 3 h of inflammation induction (69–89%) as compared to celecoxib (80%), 1-(4-methanesulfonylphenyl)-5-(4-methylaminomethylphenyl)-3-trifluoromethyl-1H-pyrazole (12a) was found to be the most effective one (89%). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 1-(4-methanesulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (10af) requires further investigation since the reaction of N-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)ethanamine (12b) or 1-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)piperazine (12c) with nitric oxide furnished N-nitroso derivatives (13 and 14), respectively, rather than the desired N-diazen-1-ium-1,2-diolate derivatives (10b and 10c).  相似文献   

4.
Methionine aminopeptidase (MetAP) carries out the cotranslational N-terminal methionine excision and is essential for bacterial survival. Mycobacterium tuberculosis expresses two MetAPs, MtMetAP1a and MtMetAP1c, at different levels in growing and stationary phases, and both are potential targets to develop novel antitubercular therapeutics. Recombinant MtMetAP1a was purified as an apoenzyme, and metal binding and activation were characterized with an activity assay using a fluorogenic substrate. Ni(II), Co(II) and Fe(II) bound tightly at micromolar concentrations, and Ni(II) was the most efficient activator for the MetAP-catalyzed substrate hydrolysis. Although the characteristics of metal binding and activation are similar to MtMetAP1c we characterized before, MtMetAP1a was significantly more active, and more importantly, a set of inhibitors displayed completely different inhibitory profiles on the two mycobacterial MetAPs in both potency and metalloform selectivity. The differences in catalysis and inhibition predicted the significant differences in active site structure.  相似文献   

5.
The coordination of the ligands bis(pyrazol-1-yl)acetate (bpza) and bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza) to rhenium(VII) was investigated. The compounds [(bpza)ReO3] and [(bdmpza)ReO3] were synthesised by reaction of bpza and bdmpza with perrhenic acid with the loss of one water molecule. The new complex [(bdmpza)ReO3] was characterised by single-crystal X-ray analysis. It has a monomeric structure with a distorted octahedron for the [N,N,O]ReO3 central core.  相似文献   

6.
11-Beta-Hydroxysteroid dehydrogenase-1(11β-HSD1) inhibitors are one of the emerging classes of molecules to fight against diabetic complications. A novel series of 4-(1-substituted-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine derivatives were synthesized and evaluated for their anti-diabetic activity. Two compounds showed anti-diabetic activity very effectively. To clarify the mechanism of action of these compounds, the most potent compounds (5g and 5h) of the synthesized analogs were further studied by testing its 11-Beta Hydroxysteroid dehydrogenase-1 inhibitory activity through in vitro enzymatic experiments. The results showed that the 11β-HSD1 inhibitory activity of compounds 5g and 5h was stable and efficient. Molecular docking studies revealed compounds 5g (−9.758) and 5h (−8.495) to have a stable binding patterns to the human 11-Beta-Hydroxysteroid dehydrogenase-1.  相似文献   

7.
A series of novel isoniazid (INH) analogues were synthesized by microwave assisted one pot reaction of INH, various benzaldehydes and dimedone in water with catalytic amount of DBSA. The synthesized compounds were evaluated for their anti-TB activity against Mycobacterium tuberculosis H37Rv (MTB) and multi-drug resistant Mycobacterium tuberculosis (MDR-TB). Among the 29 compounds, compound N-[9-[2-(benzyloxy)phenyl]-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,5,6,7,8,9-octahydro-10(1H)-acridinyl]isonicotinamide (12) inhibited MTB with MIC of <0.17 μM and MDR-TB with MIC of 0.69 μM.  相似文献   

8.
Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. ‘Direct inhibitors’ of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.  相似文献   

9.
Fibroblast growth factor receptor 1 (FGFR1) plays an important role in tumorigenesis and is therefore an attractive target for anticancer therapy. Using molecular docking approach we have identified inhibitor of FGFR1 belonging to 5-amino-4-(1H-benzoimidazol-2-yl)-phenyl-1,2-dihydro-pyrrol-3-ones with IC50 value of 3.5 μM. A series of derivatives of this chemical scaffold has been synthesized and evaluated for inhibition of FGFR1 kinase activity. It was revealed that the most promising compounds 5-amino-1-(3-hydroxy-phenyl)-4-(6-methyl-1H-benzoimidazol-2-yl)-1,2-dihydro-pyrrol-3-one and 5-amino-4-(1H-benzoimidazol-2-yl)-1-(3-hydroxy-phenyl)-1,2-dihydro-pyrrol-3-one inhibit FGFR1 with IC50 values of 0.63 and 0.32 μM, respectively, and posses antiproliferative activity against KG1 myeloma cell line with IC50 values of 5.6 and 9.3 μM. Structure–activity relationships have been studied and binding mode of this chemical class has been proposed.  相似文献   

10.
The role and the importance of the sulfonate moiety in phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) were assessed using its bioisosteric sulfonamide equivalent leading to new cytochrome P450 1A1 (CYP1A1)-activated prodrugs designated as 4-(3-alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides (PAIB-SAs). PAIB-SAs are active in the submicromolar to low micromolar range showing selectivity toward CYP1A1-expressing MCF7 cells as compared to cells devoid of CYP1A1 activity such as MDA-MB-231 and HaCaT cells. The most potent, PAIB-SA 13, bearing a trimethoxyphenyl group on ring B blocks the cell cycle progression in G2/M phase, disrupts the microtubule dynamics and is biotransformed by CYP1A1 into CEU-638, its potent antimicrotuble counterpart. Structure-activity relationships related to PAIB-SOs and PAIB-SAs evidenced that PAIB-SOs and PAIB-SAs are true bioisosteric equivalents fully and selectively activatable by CYP1A-expressing cells into potent antimitotics.  相似文献   

11.
Three new ion-pair complexes (m-MPYNN)2Ni(mnt)2 (1), (p-MPYNN)2Ni(mnt)2 (2) and (p-MPYNN)2Cu(mnt)2 (3) (m- or p-MPYNNI = [3- or4- (4,4,5,5-tetramethyl-1-oxido-3-oxyl-4,5-dihydro-3H-imidazol-2′-yl)-1-methylpyridinium] iodide, mnt = maleonitriledithiolate) have been prepared and characterized by elemental analyses, IR, single crystal X-ray diffraction and magnetic susceptibility. In complex 1, the m-MPYNN cations form a centrosymmetric dimer, and the [Ni(mnt)2]2− anion lies on a center of inversion. Complexes 2 and 3 show layered packing, and the p-MPYNN cations lie between the layers of the anions. Magnetic susceptibility measurements in the temperature range 2-300 K show that the three complexes exhibit weak antiferromagnetic behaviors. The behavior of complex 1 was explained with the singlet-triplet model.  相似文献   

12.
(Z)-2-((1H-Indazol-3-yl)methylene)-6-methoxy-7-(piperazin-1-ylmethyl)benzofuran-3(2H)-one is a potent and selective proviral integration site in moloney murine leukemia virus kinase 1 (PIM1) inhibitor with an IC50 value of 3 nM. (Z)-2-((1H-Indazol-3-yl)methylene)-6-[11C]methoxy-7-(piperazin-1-ylmethyl)benzofuran-3(2H)-one, a new potential PET probe for imaging of the enzyme PIM1, was first designed and synthesized in 20–30% decay corrected radiochemical yield and 370–740 GBq/μmol specific activity at end of bombardment (EOB). The synthetic strategy was to prepare a carbon-11-labeled Boc-protected intermediate followed by a quick acidic de-protection.  相似文献   

13.
Intermittent exposure during a period of 3 weeks of undamaged Arabidopsis plants to trace amounts of volatiles emitted by freshly damaged Arabidopsis plants resulted in an increase of subsequent artificial-damage-induced production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in the exposed Arabidopsis plants when compared with Arabidopsis plants exposed to undamaged Arabidopsis plant volatiles (control plants). We previously showed that (Z)-3-hexen-1-yl acetate attracts a parasitic wasp, Cotesia glomerata. Thus, the induced production of this volatile explained our previously reported finding that, when artificially damaged, the exposed plants were more attractive to C. glomerata than control plants.  相似文献   

14.
In this work, we describe the ‘green’ synthesis of novel 6-(adamantan-1-yl)-2-substituted-imidazo[2,1-b][1,3,4]thiadiazoles (AITs) by ring formation reactions using 1-(adamantan-1-yl)-2-bromoethanone and 5-alkyl/aryl-2-amino1,3,4-thiadiazoles on a nano material base in ionic liquid media. Given the established activity of imidazothiadiazoles against M. tuberculosis, we next examined the anti-TB activity of AITs against the H37Rv strain using Alamar blue assay. Among the tested compounds 6-(adamantan-1-yl)-2-(4-methoxyphenyl)imidazo[2,1-b][1,3,4]thiadiazole (3f) showed potent inhibitory activity towards M. tuberculosis with an MIC value of 8.5 μM. The inhibitory effect of this molecule against M. tuberculosis was comparable to the standard drugs such as Pyrazinamide, Streptomycin, and Ciprofloxacin drugs. Mechanistically, an in silico analysis predicted sterol 14α-demethylase (CYP51) as the likely target and experimental activity of 3f in this system corroborated the in silico target prediction. In summary, we herein report the synthesis and biological evaluation of novel AITs against M. tuberculosis that likely target CYP51 to induce their antimycobacterial activity.  相似文献   

15.
Two new manganese(II) complexes, [Mn(L1)(L1H)(ClO4)(H2O)][ClO4]2·0.5CH3CN·H2O (1) [L1 = trans-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)] and [Mn2(μ-L2)2(H2O)3(CH3CN)3][ClO4]4·2CH3CN (2) [L2 = cis-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)], have been prepared and examined by single-crystal X-ray diffraction analysis, showing that complex 1 is a mononuclear compound, whereas complex 2 is a dinuclear species. The cis/trans isomers L1 and L2 have similar coordination properties, but behave as bidentate and tridentate chelating ligands, respectively, giving distorted octahedral metal coordination geometries. X-ray diffraction studies revealed that the molecular and crystal structures are stabilized by a series of intra- and intermolecular interactions. In both cases extended supramolecular networks are generated, in compound 1 through O-H···O, O-H···N, N-H···O, N-H···N, C-H···O, C-H···N, C-H···π and π···π interactions, and in compound 2 through O-H···O, O-H···N, C-H···O and π···π interactions. The observed structural differences between the two metal complexes might be a consequence of these stabilizing effects.  相似文献   

16.
1,4,7,10-Tetrakis{[N-(1H-imidazol-2-yl)carbamoyl]methyl}-1,4,7,10-tetraazacyclododecane (dotami), a tetra(1H-imidazol-2-yl) derivative of the well-studied octadentate 1,4,7,10-tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane (dotam) ligand, was synthesized by reaction of 1,4,7,10-tetraazacyclododecane with N-(1H-imidazol-2-yl)chloroacetamide in high yield. Its tricationic thulium complex was isolated as a water-soluble chloride salt. The detection of the mildly acidic amide and amine protons by direct proton NMR in aqueous solution was unsuccessful, but such exchangeable protons could be detected via their chemical exchange-dependent saturation transfer (CEST) effect. The observed CEST effect was distinctly different from that found for respective dotam complexes and is, therefore, ascribed to exchangeable protons associated with the imidazole substituent.  相似文献   

17.
Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.  相似文献   

18.
In this paper, spectral and structural characterizations of a new dinuclear copper(II) complex (1), formulated as [Cu2(3-(thiophen-2-yl)-1,10-phenanthroline)2(μ-oxalate)(DMF)2](ClO4)2 (DMF = N,N′-dimethylformamide), have been described. Two five-coordinate copper(II) centers are bridged by a four-dentate oxalate dianion forming a planar molecular geometry with the Cu-Cu separation of 5.117(4) Å. The two ligands in 1 adopt a trans configuration to each other and two monodentate DMF molecules are positioned at each side of the molecular plane. In addition, typical π-π stacking interactions are found between adjacent phenanthroline and thiophene rings forming a layered packing structure. A compressed pyramidal configurational alteration is observed for each copper(II) center when the temperature is decreased from 291(2) to 100(2) K.  相似文献   

19.
The 1,3-dipolar cycloaddition of azomethine ylides derived from substituted isatins and 1,3-thiazolane-4-carboxylic acid to a series of 1-methyl-3,5-bis[(E)-arylmethylidene]-tetrahydro-4(1H)-pyridinones afforded novel spiro-pyrrolothiazoles chemo-, regio- and stereoselectively in quantitative yields. These compounds were screened for their in vitro activity against Mycobacterium tuberculosis H37Rv (MTB) and multi-drug resistant M. tuberculosis (MDR-TB) using agar dilution method. Among the synthesized compounds, spiro[5.3′′]-5′′-nitrooxindole-spiro-[6.3′]-1′-methyl-5′-(2,4-di-chlorophenylmethylidene)tetrahydro-4′(1H)-pyridinone-7-(2,4-dichlorophenyl)tetra-hydro-1H-pyrrolo[1,2-c][1,3]thiazole (9k) was found to be the most active with a minimum inhibitory concentration (MIC) of 0.6 μM against MTB and MDR-TB.  相似文献   

20.
A series of 1-(tetrazol-1-yl)alkanes [ntz] with n = 1-4 were synthesised as ligands for iron(II) spin crossover complexes. Within this series 1-(tetrazol-1-yl)butane [4tz] was prepared for the first time, whereas 1-(tetrazol-1-yl)methane [1tz], 1-(tetrazol-1-yl)ethane [2tz], 1-(tetrazol-1-yl)propane [3tz] and the [hexakis(ntz)iron(II)]bis(tetrafluoroborate) complexes were prepared according to the literature. Aiming for a comparative study we characterized all four compounds by XRPD, magnetic susceptibility measurements, 57Fe-Moessbauer spectroscopy and IR spectroscopy. [Fe(4tz)6](BF4)2 yielded appropriate single crystals and an X-ray structure of the new compound [Fe(4tz)6](BF4)2 is presented. The magnetic and structural properties of all [Fe(ntz)6](BF4)2 are compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号