首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.Key words: Saccharomyces pastorianus, beer, genome, interspecies hybrid, larger yeast  相似文献   

2.
Saccharomyces cerevisiae strains with favorable characteristics are preferred for application in industries. However, the current ability to reprogram a yeast cell on the genome scale is limited due to the complexity of yeast ploids. In this study, a method named genome replication engineering-assisted continuous evolution (GREACE) was proved efficient in engineering S. cerevisiae with different ploids. Through iterative cycles of culture coupled with selection, GREACE could continuously improve the target traits of yeast by accumulating beneficial genetic modification in genome. The application of GREACE greatly improved the tolerance of yeast against acetic acid compared with their parent strain. This method could also be employed to improve yeast aroma profile and the phenotype could be stably inherited to the offspring. Therefore, GREACE method was efficient in S. cerevisiae engineering and it could be further used to evolve yeast with other specific characteristics.  相似文献   

3.
We developed a system to monitor the transfer of heterologous DNA from a genetically manipulated strain of Saccharomyces cerevisiae to Escherichia coli. This system is based on a yeast strain that carries multiple integrated copies of a pUC-derived plasmid. The bacterial sequences are maintained in the yeast genome by selectable markers for lactose utilization. Lysates of the yeast strain were used to transform E. coli. Transfer of DNA was measured by determining the number of ampicillin-resistant E. coli clones. Our results show that transmission of the Ampr gene to E. coli by genetic transformation, caused by DNA released from the yeast, occurs at a very low frequency (about 50 transformants per μg of DNA) under optimal conditions (a highly competent host strain and a highly efficient transformation procedure). These results suggest that under natural conditions, spontaneous transmission of chromosomal genes from genetically modified organisms is likely to be rare.  相似文献   

4.
Summary A high frequency transformation system for the methylotrophic yeast Hansenula polymorpha has been developed. This system depends on complementation of isolated uracil auxotrophs by the URA3 gene of Saccharomyces cerevisiae. Maintenance of the uracil prototrophy is based on integration of plasmid YIp5 at random sites within the H. polymorpha genome and on autonomously replicating plasmids containing ARS1 of S. cerevisiae or related sequences cloned from the host DNA. The sequence of one autonomously replicating sequence (HARS1) from H. polymorpha has been determined showing an AT-rich region of 9 bp with some similarity to the consensus sequence of known eukaryotic replication origins. Mitotic loss of autonomously replicating sequences is high; selection for stable uracil prototrophs yields multiple tandem arrangement of the transformed DNA with no detectable loss of the phenotype on non-selective medium. These features offer the possibility for extensive gene expression in H. polymorpha.  相似文献   

5.
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.  相似文献   

6.
7.

Background

Three complete genomes of Prochlorococcus species, the smallest and most abundant photosynthetic organism in the ocean, have recently been published. Comparative genome analyses reveal that genome shrinkage has occurred within this genus, associated with a sharp reduction in G+C content. As all examples of genome reduction characterized so far have been restricted to endosymbionts or pathogens, with a host-dependent lifestyle, the observed genome reduction in Prochlorococcus is the first documented example of such a process in a free-living organism.

Results

Our results clearly indicate that genome reduction has been accompanied by an increased rate of protein evolution in P. marinus SS120 that is even more pronounced in P. marinus MED4. This acceleration has affected every functional category of protein-coding genes. In contrast, the 16S rRNA gene seems to have evolved clock-like in this genus. We observed that MED4 and SS120 have lost several DNA-repair genes, the absence of which could be related to the mutational bias and the acceleration of amino-acid substitution.

Conclusions

We have examined the evolutionary mechanisms involved in this process, which are different from those known from host-dependent organisms. Indeed, most substitutions that have occurred in Prochlorococcus have to be selectively neutral, as the large size of populations imposes low genetic drift and strong purifying selection. We assume that the major driving force behind genome reduction within the Prochlorococcus radiation has been a selective process favoring the adaptation of this organism to its environment. A scenario is proposed for genome evolution in this genus.  相似文献   

8.
Marine unicellular cyanobacteria, represented by Synechococcus and Prochlorococcus, dominate the total phytoplankton biomass and production in oligotrophic ocean. In this study, we employed comparative genomics approaches to extensively investigate synonymous codon usage bias and evolutionary rates in a large number of closely related species of marine unicellular cyanobacteria. Although these two groups of marine cyanobacteria have a close phylogenetic relationship, we find that they are highly divergent not only in codon usage patterns but also in the driving forces behind the diversification. It is revealed that in Prochlorococcus, mutation and genome compositional constraints are the main forces contributing to codon usage bias, whereas in Synechococcus, translational selection. In addition, nucleotide substitution rate analysis indicates that they are not evolving at a constant rate after the divergence and that the average dN/dS values of core genes in Synechococcus are significantly higher than those in Prochlorococcus. Our evolutionary genomic analysis provides the first insight into codon usage, evolutionary genetic mechanisms and environmental adaptation of Synechococcus and Prochlorococcus after divergence.  相似文献   

9.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (~570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.  相似文献   

10.
Dong C  Poulter RT  Han JS 《Genetics》2009,181(1):301-311
Over one-third of human genome sequence is a product of non-LTR retrotransposition. The retrotransposon that currently drives this process in humans is the highly abundant LINE-1 (L1) element. Despite the ubiquitous nature of L1's in mammals, we still lack a complete mechanistic understanding of the L1 replication cycle and how it is regulated. To generate a genetically amenable model for non-LTR retrotransposition, we have reengineered the Zorro3 retrotransposon, an L1 homolog from Candida albicans, for use in the budding yeast Saccharomyces cerevisiae. We found that S. cerevisiae, which has no endogenous L1 homologs or remnants, can still support Zorro3 retrotransposition. Analysis of Zorro3 mutants and insertion structures suggest that this is authentic L1-like retrotransposition with remarkable resemblance to mammalian L1-mediated events. This suggests that S. cerevisiae has unexpectedly retained the basal host machinery required for L1 retrotransposition. This model will also serve as a powerful system to study the cell biology of L1 elements and for the genetic identification and characterization of cellular factors involved in L1 retrotransposition.  相似文献   

11.
The spatio-temporal program of genome replication across eukaryotes is thought to be driven both by the uneven loading of pre-replication complexes (pre-RCs) across the genome at the onset of S-phase, and by differences in the timing of activation of these complexes during S phase. To determine the degree to which distribution of pre-RC loading alone could account for chromosomal replication patterns, we mapped the binding sites of the Mcm2-7 helicase complex (MCM) in budding yeast, fission yeast, mouse and humans. We observed similar individual MCM double-hexamer (DH) footprints across the species, but notable differences in their distribution: Footprints in budding yeast were more sharply focused compared to the other three organisms, consistent with the relative sequence specificity of replication origins in S. cerevisiae. Nonetheless, with some clear exceptions, most notably the inactive X-chromosome, much of the fluctuation in replication timing along the chromosomes in all four organisms reflected uneven chromosomal distribution of pre-replication complexes.  相似文献   

12.
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.  相似文献   

13.
Three DNA fragments, trs1, 2 and 3, were isolated from the Trichoderma reesei genome on the basis of their ability to promote autonomous replication of plasmids in Saccharomyces cerevisiae. Each trs element bound specifically to the isolated T. reesei nuclear matrix in vitro, and two of them bound in vivo, indicating that they are matrix attachment regions (MARs). A similar sequence previously isolated from Aspergillus nidulans (ans1) was also shown to bind specifically to the T. reesei nuclear matrix in vitro. The T. reesei MARs are AT-rich sequences containing 70%, 86% and 73% A+T over 2.9, 0.8 and 3.7?kb, respectively for trs1, 2 and 3. They exhibited no significant sequence homology, but were shown to contain a number of sequence motifs that occur frequently in many MARs identified in other eukaryotes. However, these motifs occurred as frequently in the trs elements as in randomly generated sequences with the same A+T content. trs1 and 3 were shown to be present as single copies in the T. reesei genome. The presence of the trs elements in transforming plasmids enhanced the frequency of integrative transformation of T. reesei up to five fold over plasmids without a trs. No evidence was obtained to suggest that the trs elements promoted efficient replication of plasmids in T. reseei. A mechanism for the enhancement of transformation frequency by the trs elements is proposed.  相似文献   

14.

Background

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.

Results

To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.

Conclusions

Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to >95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.  相似文献   

17.

Background  

Whole genome sequencing of marine cyanobacteria has revealed an unprecedented degree of genomic variation and streamlining. With a size of 1.66 megabase-pairs, Prochlorococcus sp. MED4 has the most compact of these genomes and it is enigmatic how the few identified regulatory proteins efficiently sustain the lifestyle of an ecologically successful marine microorganism. Small non-coding RNAs (ncRNAs) control a plethora of processes in eukaryotes as well as in bacteria; however, systematic searches for ncRNAs are still lacking for most eubacterial phyla outside the enterobacteria.  相似文献   

18.
19.
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world''s oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号