首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic Ischemia and Reperfusion Injury (IRI) is a major cause of liver damage during liver surgery and transplantation. Ischemic preconditioning and postconditioning are strategies that can reduce IRI. In this study, different combined types of pre- and postconditioning procedures were tested in a murine warm hepatic IRI model to evaluate their protective effects. Proanthocyanidins derived from grape seed was used before ischemia process as pharmacological preconditioning to combine with technical preconditioning and postconditioning. Three pathways related to IRI, including reactive oxygen species (ROS) generation, pro-inflammatory cytokines release and hypoxia responses were examined in hepatic IRI model. Individual and combined pre- and postconditioning protocols significantly reduce liver injury by decreasing the liver ROS and cytokine levels, as well as enhancing the hypoxia tolerance response. Our data also suggested that in addition to individual preconditioning or postconditioning, the combination of these two treatments could reduce liver ischemia/reperfusion injury more effectively by increasing the activity of ROS scavengers and antioxidants. The utilization of grape seed proanthocyanidins (GSP) could improve the oxidation resistance in combined pre- and postconditioning groups. The combined protocol also further increased the liver HIF-1 alpha protein level, but had no effect on pro-inflammatory cytokines release compared to solo treatment.  相似文献   

2.
Ischemic preconditioning (IPC) protects organs from ischemia reperfusion injury (IRI) through unknown mechanisms. Effector T cell populations have been implicated in the pathogenesis of IRI, and T regulatory cells (Treg) have become a putative therapeutic target, with suggested involvement in IPC. We explored the role of Treg in hepatic IRI and IPC in detail. IPC significantly reduced injury following ischemia reperfusion insults. Treg were mobilized rapidly to the circulation and liver after IRI, but IPC did not further increase Treg numbers, nor was it associated with modulation of circulating pro-inflammatory chemokine or cytokine profiles. We used two techniques to deplete Treg from mice prior to IRI. Neither Treg depleted FoxP3.LuciDTR mice, nor wildtyoe mice depleted of Tregs with PC61, were more susceptible to IRI compared with controls. Despite successful enrichment of Treg in the liver, by adoptive transfer of both iTreg and nTreg or by in vivo expansion of Treg with IL-2/anti-IL-2 complexes, no protection against IRI was observed.We have explored the role of Treg in IRI and IPC using a variety of techniques to deplete and enrich them within both the liver and systemically. This work represents an important negative finding that Treg are not implicated in IPC and are unlikely to have translational potential in hepatic IRI.  相似文献   

3.
Hepatic ischemia/reperfusion injury has immediate and deleterious effects on the outcome of patients after liver surgery. The precise mechanisms leading to the damage have not been completely elucidated. However, there is substantial evidence that the generation of oxygen free radicals and disturbances of the hepatic microcirculation are involved in this clinical syndrome. Microcirculatory dysfunction of the liver seems to be mediated by sinusoidal endothelial cell damage and by the imbalance of vasoconstrictor and vasodilator molecules, such as endothelin (ET), reactive oxygen species (ROS), and nitric oxide (NO). This may lead to no-reflow phenomenon with release of proinflammatory cytokines, sinusoidal plugging of neutrophils, oxidative stress, and as an ultimate consequence, hypoxic cell injury and parenchymal failure. An inducible potent endogenous mechanism against ischemia/reperfusion injury has been termed ischemic preconditioning. It has been suggested that preconditioning could inhibit the effects of different mediators involved in the microcirculatory dysfunction, including endothelin, tumor necrosis factor-alpha, and oxygen free radicals. In this review, we address the mechanisms of liver microcirculatory dysfunction and how ischemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.  相似文献   

4.
Sevoflurane (SEV) preconditioning plays a protective effect against liver ischemia reperfusion (IR) injury, while the role of autophagy in SEV-mediated hepatoprotection and the precise mechanism is unclear. In the current study, mice were pretreated with SEV or autophagy inhibitor before liver IR injury. In vitro, primary rat hepatocytes were pretreated with SEV and then exposed to hypoxia/reoxygenation (H/R). Liver function was measured by biochemical and histopathological examinations, and markers associated with inflammation, oxidation, apoptosis and autophagy were subsequently measured. We found that SEV preconditioning dramatically reduced hepatic damage, alleviated cell inflammatory response, oxidative stress and apoptosis in mice suffering hepatic IR injury, whereas these protective effects were abolished by the autophagy inhibitor 3-MA. In addition, pretreatment with SEV markedly activated HGF/Met signaling pathway regulation. Besides, pretreatment with an hepatocyte growth factor (HGF) inhibitor or knocking down HGF expression significantly downregulated phosphorylated met (p-met) and autophagy levels, and abolished the protective effects of SEV against hepatic IR or hepatocyte H/R injury. Conversely, HGF overexpression efficiently increased the p-met and autophagy levels and strengthened the protective effects of SEV. These results indicated that sevoflurane preconditioning ameliorates hepatic IR injury by activating HGF/Met-mediated autophagy.  相似文献   

5.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

6.
Recent evidence has demonstrated additional roles for the neuronal guidance protein receptor UNC5B outside the nervous system. Given the fact that ischemia reperfusion injury (IRI) of the liver is a common source of liver dysfunction and the role of UNC5B during an acute inflammatory response we investigated the role of UNC5B on acute hepatic IRI. We report here that UNC5B(+/-) mice display reduced hepatic IRI and neutrophil (PMN) infiltration compared to WT controls. This correlated with serum levels of lactate dehydrogenase (LDH), aspartate- (AST) and alanine- (ALT) aminotransferase, the presence of PMN within ischemic hepatic tissue, and serum levels of inflammatory cytokines. Moreover, injection of an anti-UNC5B antibody resulted in a significant reduction of hepatic IR injury. This was associated with reduced parameters of liver injury (LDH, ALT, AST) and accumulation of PMN within the injured hepatic tissue. In conclusion our studies demonstrate a significant role for UNC5B in the development of hepatic IRI and identified UNC5B as a potential drug target to prevent liver dysfunction in the future.  相似文献   

7.
Hypoxia-inducible factor-1 (HIF-1) could ameliorate renal ischemia reperfusion injury (IRI), but the underlying mechanism remains elusive. In the current study, we aim to investigate the possible role of prolyl hydroxylases inhibitor dimethyloxalylglycine (DMOG) in inducing delayed preconditioning-like effects against IRI. Mice were divided into four groups (n = 6): sham group; IRI group; DMOG group: pretreated with DMOG 24 h before IRI; and GW274150 + DMOG group: pretreated with DMOG followed by iNOS inhibitor GW274150 treatment 24 h before IRI. The results showed that the protein level of HIF-1a and the expression of its targets inducible nitric oxide synthase (iNOS), erythropoietin, and heme oxygenase-1 were obviously increased after administration of DMOG. Histological analysis of renal function showed improvement in tubulointerstitial injury due to ischemia by delayed preconditioning with DMOG. GW274150 antagonized the delayed renal protection afforded by DMOG as reflected by deteriorated renal dysfunction, aggravated histological injury, increased renal cell apoptosis, and increased vimentin expression in the kidney. In conclusion, our data demonstrate that DMOG pretreatment induces delayed renal protection against IRI in mice and the beneficial effects are mitigated by pharmacological inhibition of iNOS, suggesting that the protective effects derived from HIF-1 activation via DMOG in the kidney are partially mediated by iNOS.  相似文献   

8.
Claudia Penna 《BBA》2009,1787(7):781-793
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial KATP-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.  相似文献   

9.
Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (CIH) during sleep. OSA is associated with nonalcoholic steatohepatitis (NASH) in obese individuals and may contribute to progression of nonalcoholic fatty liver disease from steatosis to NASH. The purpose of this study was to examine whether CIH induces inflammatory changes in the liver in mice with diet-induced hepatic steatosis. C57BL/6J mice (n = 8) on a high-fat, high-cholesterol diet were exposed to CIH for 6 mo and were compared with mice on the same diet exposed to intermittent air (control; n = 8). CIH caused liver injury with an increase in serum ALT (461 +/- 58 U/l vs. 103 +/- 16 U/l in the control group; P < 0.01) and AST (637 +/- 37 U/l vs. 175 +/- 13 U/l in the control group; P < 0.001), whereas alkaline phosphatase and total bilirubin levels were unchanged. Histology revealed hepatic steatosis in both groups, with mild accentuation of fat staining in the zone 3 hepatocytes in mice exposed to CIH. Animals exposed to CIH exhibited lobular inflammation and fibrosis in the liver, which were not evident in control mice. CIH caused significant increases in lipid peroxidation in serum and liver tissue; significant increases in hepatic levels of myeloperoxidase and proinflammatory cytokines IL-1beta, IL-6, and CXC chemokine MIP-2; a trend toward an increase in TNF-alpha; and an increase in alpha1(I)-collagen mRNA. We conclude that CIH induces lipid peroxidation and inflammation in the livers of mice on a high-fat, high-cholesterol diet.  相似文献   

10.
Ischemic pre (IPC)- and postconditioning (IPO) protect the liver against ischemia/reperfusion injuries (IRI). Conditioning involves several different trigger factors, mediators, and effectors, many of which are affected during the early phase of reperfusion, ultimately resulting in decreased liver injuries. The aim of the present study was to investigate the genomic response induced by IPC and IPO in ischemia/reperfusion-damaged rat liver biopsies. Forty-eight male Wistar rats were divided into five groups: sham (n = 8), IRI (n = 10), IPC (n = 10), IPO (n = 10), and IPC + IPO (n = 10). The rat livers were subjected to 30 min of ischemia. Liver biopsies and blood samples were taken after 30 min of reperfusion. The biopsies were analyzed using cDNA microarrays with validation by quantitative RT-PCR. The significance analysis of microarray was used to identify genes with changed expression levels. A comparison analysis of the intervention groups showed a highly increased number of genes, with significantly different expression in the conditioned groups compared with the IRI group. A total of 172 genes were identified as the most highly affected, and these genes showed similar patterns with regard to the up- and downregulated expression levels within the conditioned groups. Pathway analysis of the 172 genes identified four networks that were involved in increased gene expression, cellular growth, and proliferation. In conclusion, the present study demonstrated that IPC, IPO, and IPC + IPO had pronounced effects on the expression levels of a large number of genes during early reperfusion. IPC, IPO, and IPC + IPO seem to mediate their protective effects by regulating the same genes and genetic networks. These identified networks are known to be involved in maintaining cellular homeostasis.  相似文献   

11.
摘要 目的:探究Nrf2激动剂CDDO-Im对高脂饮食诱导的肥胖小鼠肝脏脂肪变性的作用。方法:33只雄性C57BL/6J小鼠随机分为两组:一组16只饲喂普通饲料,另一组17只饲喂高脂饲料建立肥胖模型。造模成功后将小鼠随机分成四组:普通饲料溶剂对照组(Control ND组)、普通饲料Nrf2激动剂组(Nrf2(+) ND组)、高脂饲料溶剂对照组(Control HFD组)和高脂饲料Nrf2激动剂组(Nrf2(+) HFD组)。分别给予Nrf2激动剂CDDO-Im和等体积溶剂灌胃干预6周后,检测各组小鼠血清甘油三酯(TG)、总胆固醇(T-CHO)和低密度脂蛋白-胆固醇(LDL-C)。苏木素-伊红(HE)染色观察肝脏组织形态学变化。RT-qPCR检测肝脏Nrf2下游抗氧化基因Nqo1、Ho1和Gclc的mRNA表达水平,Western Blot检测肝脏NQO1、HO-1和GCLC的蛋白表达水平。结果:与正常小鼠相比,肥胖小鼠的体重、TG和LDL-C升高(P<0.05),肝脏脂肪变性增加,GCLC的蛋白表达水平降低(P<0.05)。在肥胖小鼠中,与溶剂对照组相比,Nrf2激动剂组小鼠的体重、血清TG降低(P<0.05),肝脏脂肪变性减轻,Nqo1和Gclc的mRNA表达水平升高(P<0.05),NQO1和GCLC的蛋白表达水平升高(P<0.05)。结论:Nrf2激动剂CDDO-Im可改善高脂饮食诱导的肥胖小鼠肝脏脂肪变性,可能与Nrf2激动剂CDDO-Im激活抗氧化基因的表达来减轻肝细胞氧化应激有关。  相似文献   

12.
Obesity is a major contributor to the development of steatohepatitis and fibrosis from nonalcoholic fatty liver disease (NAFLD). Hypoxia aggravates progression of NAFLD. In mice on high-fat diet (HFD), hepatic steatosis leads to liver tissue hypoxia, evidenced by accumulation of hypoxia inducible factor-1-alpha (HIF-1α), which is a central regulator of the global response to hypoxia. Hepatocyte cell signaling is an important factor in hepatic fibrogenesis. We here hypothesize that HIF-1α knockout in hepatocyte may protect against liver fibrosis. We first found that HFD led to 80% more hepatic collagen deposition than Hif1a−/−hep mice, which was confirmed by a-SMA staining of liver tissue. Body weight and liver weight were similar between groups. We then found the increasing HIF1a expression and decreasing PTEN expression in the mice on HFD and in PA-treated HepG2 cells. Finally, we found that HIF1 mediated PTEN/nfkb-p65 pathway plays an important role in the development of NAFLD to liver fibrosis. Collectively, these results identify a novel HIF1a/PTEN/NF-κ Bp65 signaling pathway in NAFLD, which could be targeted for the therapy.  相似文献   

13.
Rehni AK  Singh TG 《Cytokine》2012,60(1):83-89
The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1min and reperfusion of 1min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors.  相似文献   

14.
Reactive oxygen species (ROS) generated by ischemic and pharmacological preconditioning are known to act as triggers of cardiac protection; however, the involvement of ROS in ischemic and pharmacological postconditioning (PostC) in vivo and in vitro is unknown. We tested the hypothesis that ROS are involved in PostC in the mouse heart in vivo and in the isolated adult cardiac myocyte (ACM). Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion with or without ischemic or pharmacologic PostC (three cycles of 20 s reperfusion/ischemia; 1.4% isoflurane; 10 mg/kg SNC-121). Additional groups were treated with 2-mercaptopropionyl glycine (MPG), a ROS scavenger, 10 min before or after the PostC stimuli. Ischemia-, isoflurane-, and SNC-121- induced PostC reduced infarct size (24.1+/-3.2, 15.7+/-2.6, 24.9+/-2.6%, p<0.05, respectively) compared to the control group (43.4+/-3.3%). These cardiac protective effects were abolished by MPG when administered before (40.0+/-3.6, 39.3+/-3.1, 38.5+/-1.6%, respectively), but not after the PostC stimuli (26.6+/-2.3, 17.0+/-2.2, 23.9+/-1.7%, respectively). Additionally, ACM were subjected to a simulated ischemia/reperfusion protocol with isoflurane and SNC PostC. Isoflurane- and SNC-induced PostC in vitro were abolished by prior treatment with MPG. These data indicate that ROS signaling is an essential trigger of ischemic and pharmacological PostC and this is occurring at the level of the cardiac myocyte.  相似文献   

15.
Objective  Postconditioning protects the heart against ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. However, the molecular mechanism by which postconditioning suppresses apoptosis remains to be fully understood. Apoptosis repressor with caspase recruitment domain (ARC) has been demonstrated to possess the ability to protect cardiomyocytes from apoptosis induced by ischemia/reperfusion. It is not yet clear as to whether ARC contributes to the inhibitory effect of postconditioning against cardiomyocyte apoptosis. Methods  The cultured cardiomyocytes from 1-day old male Sprague–Dawley rats were exposed to 3 h hypoxia followed by 3 h of reoxygenation. Cells were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia before 3 h of reoxygenation. Results  Hypoxia/reoxygenation led to a decrease of endogenous ARC protein levels. In contrast, postconditioning could block the reduction of endogenous ARC protein levels. Interestingly, inhibition of endogenous ARC expression by ARC antisense oligodeoxynucleotides reduced the inhibitory effect of postconditioning against apoptosis. Furthermore, our data showed that postconditioning suppressed the loss of mitochondrial membrane potential, Bax activation and the release of mitochondrial cytochrome c to cytosol. However, these inhibitory effects of postconditioning disappeared upon knockdown of endogenous ARC. Conclusion  Our data for the first time demonstrate that ARC plays an essential role in mediating the cardioprotective effect of postconditioning against apoptosis initiated by the mitochondrial pathway.  相似文献   

16.
Jiang X  Shi E  Li L  Nakajima Y  Sato S 《Life sciences》2008,82(11-12):608-614
Postconditioning can induce cardioprotection against ischemia. However, the data on postconditioning of the spinal cord is very limited. We investigated here whether co-application of ischemic preconditioning (IPC) and postconditioning can provide additive neuroprotection against prolonged spinal cord ischemia. Spinal cord ischemia was produced in rabbits by infrarenal aortic occlusion with a balloon catheter for 30 min. The four treatment groups were control (n=10): no intervention; IPC (n=10): a 5-minute aortic occlusion was performed 20 min before the prolonged ischemia; Postcon (n=10): postconditioning comprised of four cycles of 1-minute occlusion/1-minute reperfusion was applied one minute after the start of reperfusion. IPC+postcon (n=11): both IPC and postconditioning were applied. Functional evaluation with Tarlov score was performed during a 14-day observation period. Neurologic impairment was noticeably attenuated in the IPC+postcon group (compared with the control group, P<0.01, at day 1, day 2, day 7 and day 14, respectively), but not in either the IPC or Postcon group. Plasma malondialdehyde levels after reperfusion were significantly decreased to a similar extent in the IPC, Postcon and IPC+Postcon groups (compared with the control group (P<0.01). In the IPC+Postcon group, many more large motor neurons were preserved than in the control group (P<0.05) and white matter injury was also markedly attenuated as evidenced by reduction of the vacuolation area of the white matter (P<0.01) and decreased amyloid precursor protein immunoreactivity (P<0.01). From this, we conclude that the combination of IPC and postconditioning induces additive neuroprotective effects for spinal cord against ischemia and reperfusion injuries.  相似文献   

17.
Recently, Korean traditional fermented soybean paste, called Doenjang, has attracted attention for its protective effect against diet-related chronic diseases such as obesity and type 2 diabetes. Long-term fermented soybean pastes (LFSPs) are made by fermentation with naturally-occurring microorganisms for several months, whereas short-term fermented soybean pastes (SFSPs) are produced by shorter-time fermentation inoculated with a starter culture. Here, we demonstrate that administration of LFSP, but not SFSP, protects high-fat diet (HFD)-fed obese mice against non-alcohol fatty liver disease (NAFLD) and insulin resistance. LFSP suppressed body weight gain in parallel with reduction in fat accumulation in mesenteric adipose tissue (MAT) and the liver via modulation of MAT lipolysis and hepatic lipid uptake. LFSP-treated mice also had improved glucose tolerance and increased adiponectin levels concomitantly with enhanced AMPK activation in skeletal muscle and suppressed expression of pro-inflammatory cytokines in skeletal muscle and the liver. LFSP also attenuated HFD-induced gut permeability and lowered serum lipopolysaccharide level, providing an evidence for its probiotic effects, which was supported by the observation that treatment of a probiotic mixture of LFSP-originated Bacillus strains protected mice against HFD-induced adiposity and glucose intolerance. Our findings suggest that the intake of LFSP, but not SFSP, offers protection against NAFLD and insulin resistance, which is an effect of long-term fermentation resulting in elevated contents of active ingredients (especially flavonoids) and higher diversity and richness of Bacillus probiotic strains compared to SFSP.  相似文献   

18.
腺苷和乙酰胆碱后适应诱导的心肌保护作用   总被引:3,自引:0,他引:3  
Zang WJ  Sun L  Yu XJ 《生理学报》2007,59(5):593-600
近年来缺血后适应的提出成为抗再灌注损伤的里程碑,其良好的临床可控性和可靠的保护效应引起人们广泛关注。缺血后适应即在心肌长时间缺血后再灌注之前,进行数次短暂的再灌注,缺血的循环处理,诱导产生心肌保护效应,其循环次数和间隔时间存在种属差异。研究证实后适应不仅限制急性期梗死面积,还可以减轻长期损伤,其是否与保护血管内皮、抑制中性粒细胞介导的氧化损伤相关还存在争议。上调再灌注损伤补救激酶(reperfusion injury salvageHnase,RISK)通路是后适应保护的重要机制之一,即激活磷脂酰肌醇一3激酶(phosphatidy linositol3-kinase,P13K)-Akt途径和,或细胞外信号调节激酶(extracellular signal-regulatedkinase,ERK)途径,抑制线粒体通透性转换孔的开放,减少细胞凋亡和坏死。但是这两条途径的地位和关系还有待于进一步研究。为了更加适用于临床,研究者将机械调控转变为药物干预,观察药物能否模拟缺血后适应发挥保护作用,即药物后适应。腺苷是研究最广泛,也是最有希望成为临床正式用药的一种药物。我们实验室首先提出了乙酰胆碱可以模拟缺血后适应,通过线粒体ATP敏感钾通道发挥心肌保护效应。本文着重阐述缺血后适应保护缺血,再灌注损伤的效应和信号转导通路,尤其是腺苷和乙酰胆碱模拟药物后适应的可能机制和临床应用。  相似文献   

19.
《Free radical research》2013,47(10):1210-1217
Abstract

While ischemic preconditioning (IPC) and other cardioprotective interventions have been proposed to protect the heart from ischemia/reperfusion (I/R) injury by inhibiting mitochondrial complex I activity upon reperfusion, the exact mechanism underlying the modulation of complex I activity remains elusive. This study was aimed to test the hypothesis that IPC modulates complex I activity at reperfusion by activating mitochondrial Src tyrosine kinase, and induces cardioprotection against I/R injury. Isolated rat hearts were preconditioned by three cycles of 5-min ischemia and 5-min reperfusion prior to 30-min index ischemia followed by 2 h of reperfusion. Mitochondrial Src phosphorylation (Tyr416) was dramatically decreased during I/R, implying inactivation of Src tyrosine kinase by I/R. IPC increased mitochondrial Src phosphorylation upon reperfusion and this was inhibited by the selective Src tyrosine kinase inhibitor PP2. IPC's anti-infarct effect was inhibited by the selective Src tyrosine kinase inhibitor PP2. Complex I activity was significantly increased upon reperfusion, an effect that was prevented by IPC in a Src tyrosine kinase-dependent manner. In support, Src and phospho-Src were found in complex I. Furthermore, IPC prevented hypoxia/reoxygenation-induced mitochondrial reactive oxygen species (ROS) generation and cellular injury in rat cardiomyocytes, which was revoked by PP2. Finally, IPC reduced LDH release induced by both hypoxia/reoxygenation and simulated ischemia/reperfusion, an effect that was reversed by PP2 and Src siRNA. These data suggest that mitochondrial Src tyrosine kinase accounts for the inhibitory action of IPC on complex I and mitochondrial ROS generation, and thereby plays a role in the cardioprotective effect of IPC.  相似文献   

20.

Background

Low-dose lipopolysaccharide (LPS) preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI) in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI.

Methods

LPS (100 µg/kg/d) was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA). Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA.

Results

LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS)-3 suppressor were induced. Importantly, ATF4 siRNA is consistent with results of LPS preconditioning in macrophages.

Conclusions

This work is the first time to provide evidence for LPS preconditioning protects hepatocytes from IRI through inhibiting ATF4-CHOP pathway, which may be critical to reducing related apoptosis molecules and modulating innate inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号