首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-6 (IL-6) plays an important role in liver regeneration and protection against liver damage. In addition to IL-6 classic signaling via membrane bound receptor (mIL-6R), IL-6 signaling can also be mediated by soluble IL-6R (sIL-6R) thereby activating cells that do not express membrane bound IL-6R. This process has been named trans-signaling. IL-6 trans-signaling has been demonstrated to operate during liver regeneration. We have developed methods to specifically block or mimic IL-6 trans-signaling. A soluble gp130 protein (sgp130Fc) exclusively inhibits IL-6 trans-signaling whereas an IL-6/sIL-6R fusion protein (Hyper-IL-6) mimics IL-6 trans-signaling. Using these tools we investigate the role of IL-6 trans-signaling in CCl4 induced liver damage. Blockade of IL-6 trans-signaling during CCl4 induced liver damage led to higher liver damage, although induction of Cyp4502E1 and thus bioactivation of CCl4 was unchanged. Depletion of neutrophils resulted in reduced liver transaminase levels irrespective of IL-6 trans-signaling blockade. Furthermore, IL-6 trans-signaling was important for refilling of hepatocyte glycogen stores, which were depleted 24 h after CCl4 treatment. We conclude that IL-6 trans-signaling via the soluble IL-6R is important for the physiologic response of the liver to CCl4 induced chemical damage.  相似文献   

2.
No inhibition of IL-27 signaling by soluble gp130   总被引:6,自引:0,他引:6  
Soluble gp130 is the natural inhibitor of trans-signaling mediated by the soluble IL-6/IL-6R complex. In mouse models, recombinant sgp130 has been successfully applied for the treatment of diseases that are triggered and maintained by soluble IL-6R like Crohn's disease, peritonitis, rheumatoid arthritis, and colon cancer. The novel heterodimeric cytokine IL-27 (p28/EBV-induced gene 3) has been shown to act via a heterodimeric receptor complex of gp130 and the WSX-1 receptor, and to co-regulate the Th(1) immune response after infection. Therefore, we have tested the potential of the recombinant sgp130-Fc protein to also inhibit signaling-mediated IL-27. Here we show that sgp130-Fc does not interfere with IL-27 signaling. We therefore conclude that IL-27 does not bind with high affinity to gp130.  相似文献   

3.
The IL-6 signaling complex is described as a hexamer, formed by the association of two IL-6·IL-6 receptor (IL-6R)·gp130 trimers, with gp130 being the signal transducer inducing cis- and trans-mediated signaling via a membrane-bound or soluble form of the IL-6R, respectively. 25F10 is an anti-mouse IL-6R mAb that binds to both membrane-bound IL-6R and soluble IL-6R with the unique property of specifically inhibiting trans-mediated signaling events. In this study, epitope mapping revealed that 25F10 interacts at site IIb of IL-6R but allows the binding of IL-6 to the IL-6R and the recruitment of gp130, forming a trimer complex. Binding of 25F10 to IL-6R prevented the formation of the hexameric complex obligate for trans-mediated signaling, suggesting that the cis- and trans-modes of IL-6 signaling adopt different mechanisms for receptor complex assembly. To study this phenomenon also in the human system, we developed NI-1201, a mAb that targets, in the human IL-6R sequence, the epitope recognized by 25F10 for mice. Interestingly, NI-1201, however, did not selectively inhibit human IL-6 trans-signaling, although both mAbs produced beneficial outcomes in conditions of exacerbated IL-6 as compared with a site I-directed mAb. These findings shed light on the complexity of IL-6 signaling. First, triggering cis- versus trans-mediated IL-6 signaling occurs via distinctive mechanisms for receptor complex assembly in mice. Second, the formation of the receptor complex leading to cis- and trans-signaling biology in mice and humans is different, and this should be taken into account when developing strategies to inhibit IL-6 clinically.  相似文献   

4.
Signaling of the pleiotropic cytokine Interleukin-6 (IL-6) is coordinated by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The soluble IL-6R is mainly generated by ADAM10- and ADAM17-mediated ectodomain shedding. Little is known about the role of the 52-amino acid-residue-long IL-6R stalk region in shedding and signal transduction. Therefore, we generated and analyzed IL-6R stalk region deletion variants for cleavability and biological activity. Deletion of 10 amino acids of the stalk region surrounding the ADAM17 cleavage site substantially blocked IL-6R proteolysis by ADAM17 but only slightly affected proteolysis by ADAM10. Interestingly, additional deletion of the remaining five juxtamembrane-located amino acids also abrogated ADAM10-mediated IL-6R shedding. Larger deletions within the stalk region, that do not necessarily include the ADAM17 cleavage site, also reduced ADAM10 and ADAM17-mediated IL-6R shedding, questioning the importance of cleavage site recognition. Furthermore, we show that a 22-amino acid-long stalk region is minimally required for IL-6 classic signaling. The gp130 cytokine binding sites are separated from the plasma membrane by ∼96 Å. 22 amino acid residues, however, span maximally 83.6 Å (3.8 Å/amino acid), indicating that the three juxtamembrane fibronectin domains of gp130 are not necessarily elongated but somehow flexed to allow IL-6 classic signaling. Our findings underline a dual role of the IL-6R stalk region in IL-6 signaling. In IL-6 trans-signaling, it regulates proper proteolysis by ADAM10 and ADAM17. In IL-6 classic-signaling, it acts as a spacer to ensure IL-6·IL-6R·gp130 signal complex formation.  相似文献   

5.
Interleukin-6 trans-signaling in inflammatory bowel disease   总被引:2,自引:0,他引:2  
The pathogenesis of inflammatory bowel disease (IBD) is complex, involving a wide range of molecules including cytokines. Recent investigations support the important role of an interleukin-6 (IL-6) signaling pathway in the development of IBD. However, the molecular mechanisms of this pathway in the intestine remain incompletely understood. The circulating and intestinal levels of IL-6 as well as soluble IL-6 receptor (sIL-6R) are increased in patients with IBD. It is remarkable that the mucosal T cells of IBD patients are extremely resistant to apoptosis and that a large fraction of these cells express membrane-bound gp130 but not IL-6R. The accumulated evidence strongly supports the hypothesis that the development and perpetuation of IBD relies on the increased formation of IL-6/sIL-6R complexes interacting with membrane-bound gp130 on T cells via trans-signaling. These studies suggest that IL-6 trans-signaling may play a role in the development of IBD; they therefore imply the possibility of a selective therapeutic strategy to target this signaling.  相似文献   

6.
Increased levels of IL-6 are documented in asthma, but its contribution to the pathology is unknown. Asthma is characterized by airway wall thickening due to increased extracellular matrix deposition, inflammation, angiogenesis, and airway smooth muscle (ASM) mass. IL-6 binds to a specific membrane-bound receptor, IL-6 receptor-alpha (mIL-6Ralpha), and subsequently to the signaling protein gp130. Alternatively, IL-6 can bind to soluble IL-6 recpetor-alpha (sIL-6Ralpha) to stimulate membrane receptor-deficient cells, a process called trans-signaling. We discovered that primary human ASM cells do not express mIL-6Ralpha and, therefore, investigated the effect of IL-6 trans-signaling on the pro-remodeling phenotype of ASM. ASM required sIL-6Ralpha to activate signal transducer and activator 3, with no differences observed between cells from asthmatic subjects compared with controls. Further analysis revealed that IL-6 alone or with sIL-6Ralpha did not induce release of matrix-stimulating factors (including connective tissue growth factor, fibronectin, or integrins) and had no effect on mast cell adhesion to ASM or ASM proliferation. However, in the presence of sIL-6Ralpha, IL-6 increased eotaxin and VEGF release and may thereby contribute to local inflammation and vessel expansion in airway walls of asthmatic subjects. As levels of sIL-6Ralpha are increased in asthma, this demonstration of IL-6 trans-signaling in ASM has relevance to the development of airway remodeling.  相似文献   

7.
Classic IL-6 signaling is conditioned by the transmembrane receptor (IL-6R) and homodimerization of gp130. During trans-signaling, IL-6 binds to soluble IL-6R (sIL-6R), enabling activation of cells expressing solely gp130. Soluble gp130 (sgp130) selectively inhibits IL-6 trans-signaling. To characterize amniotic fluid (AF) IL-6 trans-signaling molecules (IL-6, sIL-6R, sgp130) in normal gestations and pregnancies complicated by intra-amniotic inflammation (IAI), we studied 301 women during second trimester (n = 39), third trimester (n = 40), and preterm labor with intact (n = 131, 85 negative IAI and 46 positive IAI) or preterm premature rupture of membranes (PPROM; n = 91, 61 negative IAI and 30 positive IAI). ELISA, Western blotting, and real-time RT-PCR were used to investigate AF, placenta, and amniochorion for protein and mRNA expression of sIL-6R, sgp130, IL-6R, and gp130. Tissues were immunostained for IL-6R, gp130, CD15(+) (polymorphonuclear), and CD3(+) (T cell) inflammatory cells. The ability of sIL-6R and sgp130 to modulate basal and LPS-stimulated release of amniochorion matrix metalloprotease-9 was tested ex vivo. We showed that in physiologic gestations, AF sgp130 decreases toward term. AF IL-6 and sIL-6R were increased in IAI, whereas sgp130 was decreased in PPROM. Our results suggested that fetal membranes are the probable source of AF sIL-6R and sgp130. Immunohistochemistry and RT-PCR revealed increased IL-6R and decreased gp130 expression in amniochorion of women with IAI. Ex vivo, sIL-6R and LPS augmented amniochorion matrix metalloprotease-9 release, whereas sgp130 opposed this effect. We conclude that IL-6 trans-signaling molecules are physiologic constituents of the AF regulated by gestational age and inflammation. PPROM likely involves functional loss of sgp130.  相似文献   

8.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

9.
Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.  相似文献   

10.
Cytokines are key mediators for the regulation of hemopoiesis and the coordination of immune responses. They exert their various functions through activation of specific cell surface receptors, thereby initiating intracellular signal transduction cascades which lead to defined cellular responses. As the common signal-transducing receptor subunit of at least seven different cytokines, gp130 is an important member of the family of hemopoietic cytokine receptors which are characterized by the presence of at least one cytokine-binding module. Mutants of gp130 that either lack the Ig-like domain D1 (DeltaD1) or contain a distinct mutation (F191E) within the cytokine-binding module have been shown to be severely impaired with respect to IL-6 induced signal transduction. After cotransfection of COS-7 cells with a combination of both inactive gp130 mutants, signal transduction in response to IL-6 is restored. Whereas cells transfected with DeltaD1 do not bind IL-6/sIL-6R complexes, cells transfected with the F191E mutant bind IL-6/sIL-6R with low affinity. Combination of DeltaD1 and F191E, however, leads to high-affinity ligand binding. These data suggest that two different gp130 epitopes, one on each receptor chain, sequentially cooperate in asymmetrical binding of IL-6/IL-6R in a tetrameric signaling complex. On the basis of our data, a model for the mechanism of IL-6-induced gp130 activation is proposed.  相似文献   

11.
IL-6 trans-signaling via the soluble IL-6 receptor (sIL-6R) plays a critical role in chronic inflammation and cancer. Soluble gp130 (sgp130) specifically inhibits IL-6 trans-signaling but was described to not interfere with classic signaling via the membrane-bound IL-6R. Physiological and most pathophysiological conditions are characterized by a molar excess of serum sIL-6R over IL-6 characterized by free IL-6 and IL-6 found in IL-6·sIL-6R complexes allowing both classic and trans-signaling. Surprisingly, under these conditions, sgp130 was able to trap all free IL-6 molecules in IL-6·sIL-6R·sgp130 complexes, resulting in inhibition of classic signaling. Because a significant fraction of IL-6 molecules did not form complexes with sIL-6R, our results demonstrate that compared with the anti-IL-6R antibody tocilizumab or the anti-trans-signaling monoclonal antibody 25F10, much lower concentrations of the dimeric sgp130Fc were sufficient to block trans-signaling. In vivo, sgp130Fc blocked IL-6 signaling in the colon but not in liver and lung, indicating that the colon is a prominent target of IL-6 trans-signaling. Our results point to a so far unanticipated role of sgp130 in the blockade of classic signaling and indicate that in vivo only low therapeutic concentrations of sgp130Fc guarantee blockade of IL-6 trans-signaling without affecting IL-6 classic signaling.  相似文献   

12.
The activation of cells that do not express the membrane bound interleukin-6 6 receptor (IL-6R) by IL-6 and the soluble IL-6 receptor (sIL-6R) is termed transsignalling. Transsignalling may be an pathogenetic factor in human diseases as diverse as multiple myeloma (MM), Castleman's disease, prostate carcinoma, Crohn's disease, systemic sclerosis, Still's disease, osteoporosis and cardiovascular diseases. IL-6 and sIL-6R may directly or indirectly enhance their own production on endothelial or bone marrow stromal cells. Positive feedback autocrine loops thus created in affected organs may either cause or maintain disease progression. In autoimmune or vasculitic disease, the ability of the IL-6/sIL-6R complex to inhibit apoptosis of autoreactive T-cells may be central to the development of tissue specific autoimmunity. The anti-apoptotic effect of the IL-6/sIL-6R complex may be involved in tumour genesis and resistance to chemotherapy.Only in rare cases, where counterregulation has failed, there is a notable systemic effect of IL-6/sIL-6R. Appropriate animal models are necessary to establish the pathogenetic role of the IL-6/sIL-6R complex. A specific treatment option for diseases influenced by the sIL-6R could be based on gp130-Fc, a soluble gp130 (sgp130) linked to the Fc-fragment of IgG1. gp130-Fc has shown efficacy in vivo in animal models of Crohn's disease.  相似文献   

13.
Generation of the soluble interleukin-6 receptor (sIL-6R) is a prerequisite for pathogenic IL-6 trans-signaling, which constitutes a distinct signaling pathway of the pleiotropic cytokine interleukin-6 (IL-6). Although in vitro experiments using ectopically overexpressed IL-6R and candidate proteases revealed major roles for the metalloproteinases ADAM10 and ADAM17 in IL-6R shedding, the identity of the protease(s) cleaving IL-6R in more physiological settings, or even in vivo, remains unknown. By taking advantage of specific pharmacological inhibitors and primary cells from ADAM-deficient mice we established that endogenous IL-6R of both human and murine origin is shed by ADAM17 in an induced manner, whereas constitutive release of endogenous IL-6R is largely mediated by ADAM10. Although circulating IL-6R levels are altered in various diseases, the origin of blood-borne IL-6R is still poorly understood. It has been shown previously that ADAM17 hypomorphic mice exhibit unaltered levels of serum sIL-6R. Here, by quantification of serum sIL-6R in protease-deficient mice as well as human patients we also excluded ADAM10, ADAM8, neutrophil elastase, cathepsin G, and proteinase 3 from contributing to circulating sIL-6R. Furthermore, we ruled out alternative splicing of the IL-6R mRNA as a potential source of circulating sIL-6R in the mouse. Instead, we found full-length IL-6R on circulating microvesicles, establishing microvesicle release as a novel mechanism for sIL-6R generation.  相似文献   

14.
Here, we report the analysis of the structure-function relationship of the extracellular region of human interleukin 6 receptor (IL-6R). Upon binding of IL-6, IL-6R becomes associated extracellularly with a non-IL-6-binding but signal transducing molecule, gp130, and the IL-6 signal is generated. In this region, the cytokine receptor family domain, but not the immunoglobulin-like domain, was responsible both for IL-6 binding and for signal transduction through gp130. Because a soluble, extracellular portion of IL-6R (sIL-6R) could bind IL-6 and mediate IL-6 functions through gp130, amino acid substitutions were introduced into sIL-6R by site-directed mutagenesis. The results, together with the previously proposed tertiary structure model, suggested that the amino acid residues critical for IL-6 binding have a tendency to be distributed to the hinge region between the two 'barrel'-like fibronectin type III modules and to the same side of these two 'barrels'. Amino acid residues, of which substitutions barely affected the IL-6-binding but did abolish the IL-6 signalling capability of sIL-6R, were identified and found to be located mainly in the membrane proximal half of the second barrel. sIL-6R mutants carrying such substitutions lacked the capacity to associate with gp130 in the presence of IL-6.  相似文献   

15.
This study describes a novel path to the activation of smooth muscle cells (SMC) by the IL-6/soluble IL-6 receptor (sIL-6R) system. Human vascular SMC constitutively express only scant amounts of IL-6R and so do not respond to stimulation with this cytokine. We show that SMC also do not constitutively express appreciable levels of gp130, which would render them sensitive to transsignaling by the IL-6/sIL-6R complex. Because gp130 is generally believed not to be subject to regulation, SMC would thus appear not to qualify as targets for the IL-6/sIL-6R system. However, we report that treatment of SMC with IL-6/sIL-6R provokes marked up-regulation of gp130 mRNA and surface protein expression. This is accompanied by secretion of IL-6 by the cells, so that an autocrine stimulation loop is created. In the wake of this self-sustaining system, there is a selective induction and secretion of MCP-1, up-regulation of ICAM-1, and marked cell proliferation. The study identifies SMC as the first example of cells in which gp130 expression is subject to substantive up-regulation, and discovers a novel amplification loop involving IL-6 and its soluble receptor that drives SMC into a proinflammatory state.  相似文献   

16.
The pleiotropic cytokine interleukin-6 (IL-6) is involved in numerous physiological and pathophysiological functions that include development, immune cell differentiation, inflammation and cancer. IL-6 can signal via the membrane-bound IL-6 receptor (IL-6R, classic signaling) or via soluble forms of the IL-6R (sIL-6R, trans-signaling). Both modes of signaling induce the formation of a homodimer of the signal transducing β-receptor glycoprotein 130 (gp130) and the activation of several intracellular signaling cascades, e.g. the Jak/STAT pathway. Intriguingly, only IL-6 trans-signaling is required for the pro-inflammatory properties of IL-6, while regenerative and anti-inflammatory functions are mediated via classic signaling. The sIL-6R is generated by different molecular mechanisms, including alternative mRNA splicing, proteolysis of the membrane-bound IL-6R and the release of extracellular vesicles. In this review, we give an in-depth overview on these molecular mechanisms with a special emphasize on IL-6R cleavage by the metalloprotease ADAM17 and other proteases. We discuss the biological functions of the sIL-6R and highlight attempts to selectively block IL-6 trans-signaling in pre-clinical animal models as well as in clinical studies in patients with inflammatory bowel disease.  相似文献   

17.
IL-6 receptor independent stimulation of human gp130 by viral IL-6   总被引:4,自引:0,他引:4  
The genome of human herpes virus 8, which is associated with Kaposi's sarcoma, encodes proteins with similarities to cytokines and chemokines including a homologue of IL-6. Although the function of these viral proteins is unclear, they might have the potential to modulate the immune system. For viral IL-6 (vIL-6), it has been demonstrated that it stimulates IL-6-dependent cells, indicating that the IL-6R system is used. IL-6 binds to IL-6R, and the IL-6/IL-6R complex associates with gp130 which dimerizes and initiates intracellular signaling. Cells that only express gp130 but no IL-6R cannot be stimulated by IL-6 unless a soluble form of the IL-6R is present. This type of signaling has been shown for hematopoietic progenitor cells, endothelial cells, and smooth muscle cells. In this paper we show that purified recombinant vIL-6 binds to gp130 and stimulates primary human smooth muscle cells. IL-6R fails to bind vIL-6 and is not involved in its signaling. A Fc fusion protein of gp130 turned out to be a potent inhibitor of vIL-6. Our data demonstrate that vIL-6 is the first cytokine which directly binds and activates gp130. This property points to a possible role of this viral cytokine in the pathophysiology of human herpes virus 8.  相似文献   

18.
Soluble cytokine receptors are frequently found in human serum, most of them possessing antagonistic properties. The Interleukin 6 receptor (IL-6R) is found as a transmembrane protein on hepatocytes and subsets of leukocytes, but soluble isoforms of the IL-6R (sIL-6R) are generated by alternative splicing or by limited proteolysis of the A Disintegrin And Metalloproteinases (ADAM) gene family members ADAM10 and ADAM17. Importantly, the sIL-6R in complex with its ligand Interleukin 6 (IL-6) has agonistic functions and requires cells expressing the signal transducing ß-receptor gp130 but not the membrane-bound IL-6R. We have called this process IL-6 trans-signaling. Naturally occurring isoforms of soluble gp130 (sgp130), which are generated by alternative splicing, are natural inhibitors of IL-6 trans-signaling, leaving IL-6 classic signaling via the membrane-bound IL-6R unaffected. We used recombinant sgp130Fc protein and recently generated transgenic mice expressing high levels of sgp130Fc to discriminate between classic and trans-signaling in vivo, and demonstrated that IL-6 trans-signaling is critically involved in generation and maintenance of several inflammatory and autoimmune diseases including chronic inflammatory bowel disease, rheumatoid arthritis, peritonitis and asthma, as well as inflammation-induced colon cancer.  相似文献   

19.
Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD). Interleukin-6 (IL-6) signaling participates in inflammation responses central to the progression of DN. Current evidence suggests that these IL-6 responses are mediated via gp130–STAT3 dependent mechanisms which, on one hand, trigger globally the transition from innate to adaptive immune response, and on the other hand act locally for tissue remodeling and immune cell infiltration. In diabetic conditions the role of IL-6 is not well elucidated. Both IL-6 classical signaling pathway via receptor IL-6R (IL-6R) and IL-6 trans-signaling pathway via soluble IL-6R (sIL-6R) were shown to participate in the pathogenesis and progression of DN, and IL-6 appears to influence renal cells also in an autocrine manner. To date, evidence is limited. The goal of this review is to provide an overview of our current understanding on the role of IL-6 signaling in DN and to delineate challenges for future research. Putative sequential events related to IL-6 secretion by different cell populations in diabetic conditions are outlined. Further, we discuss potential applications of anti-IL-6 therapy in the context of DN.  相似文献   

20.
Interleukin 6 (IL-6) signaling plays a role in inflammation, cancer, and senescence. Here, we identified soluble IL-6 receptor (sIL-6R) as a member of the senescence-associated secretory phenotype (SASP). Senescence-associated sIL-6R upregulation was mediated by mammalian target of rapamycin (mTOR). sIL-6R was mainly generated by a disintegrin and metalloprotease 10 (ADAM10)-dependent ectodomain shedding to enable IL-6 trans-signaling. In vivo, heterozygous PTEN-knockout mice exhibited higher mTOR activity and increased sIL-6R levels. Moreover, aberrant EGF receptor (EGFR) activation triggered IL-6 synthesis. In analogy to senescence, EGFR-induced activation of mTOR also induced IL-6R expression and sIL-6R generation. Hence, mTOR activation reprograms IL-6 non-responder cells into IL-6 responder cells. Our data suggest that mTOR serves as a central molecular switch to facilitate cellular IL-6 classic and trans-signaling via IL-6R upregulation with direct implications for cellular senescence and tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号