首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Riboswitches are functional mRNA that control gene expression. Thiamine pyrophosphate (TPP) binds to thi-box riboswitch RNA and allosterically inhibits genes that code for proteins involved in the biosynthesis and transport of thiamine. Thiamine binding to the pyrimidine sensor helix and pyrophosphate binding to the pyrophosphate sensor helix cause changes in RNA conformation that regulate gene expression. Here we examine the thermodynamic properties of the internal loop of the pyrophosphate binding domain by comparing the wild-type construct (RNA WT) with six modified 2 × 2 bulged RNA and one 2 × 2 bulged DNA. The wild-type construct retains five conserved bases of the pyrophosphate sensor domain, two of which are in the 2 × 2 bulge (C65 and G66). The RNA WT construct was among the most stable (ΔG°37 = −7.7 kcal/mol) in 1 M KCl at pH 7.5. Breaking the A•G mismatch of the bulge decreases the stability of the construct ∼0.5–1 kcal/mol, but does not affect magnesium binding to the RNA WT. Guanine at position 48 is important for RNA–Mg2+ interactions of the TPP-binding riboswitch at pH 7.5. In the presence of 9.5 mM magnesium at pH 5.5, the bulged RNA constructs gained an average of 1.1 kcal/mol relative to 1 M salt. Formation of a single A+•C mismatch base pair contributes about 0.5 kcal/mol at pH 5.5, whereas two tandem A+•C mismatch base pairs together contribute about 2 kcal/mol.  相似文献   

2.

Background and Aims

Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize.

Methods

A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels.

Key Results

Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation.

Conclusions

Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions.  相似文献   

3.
Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT m = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.  相似文献   

4.
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10–13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately −6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately −3.3 kcal/mol) together with other specific interactions (ΔG° approximately −0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the kcat term instead; the rate increases by 6–7 orders of magnitude for cognate DNA as compared with non-cognate one. The kcat values for substrates of different sequences correlate with the DNA twist, while the KM values correlate with ΔG° of the DNA fragments surrounding the lesion (position from −6 to +6). The functions for predicting the KM and kcat values for different sequences containing oxoG were found.  相似文献   

5.
Formation of DNA quadruplexes requires monovalent cation binding. To characterize the cation binding stoichiometry and linkage between binding and folding, we carried out KCl titrations of Tel22 (d[A(GGGTTA)3]), a model of the human telomere sequence, using a fluorescent indicator to determine [K+]free and circular dichroism to assess the extent of folding. At [K+]free = 5 mM (sufficient for > 95% folding), the apparent binding stoichiometry is 3K+/Tel22; at [K+]free = 20 mM, it increased to 8-10K+/Tel22. Thermodynamic analysis shows that at [K+]free = 5 mM, K+ binding contributes approximately − 4.9 kcal/mol for folding Tel22. The overall folding free energy is − 2.4 kcal/mol, indicating that there are energetically unfavorable contributions to folding. Thus, quadruplex folding is driven almost entirely by the energy of cation binding with little or no contribution from other weak molecular interactions.  相似文献   

6.
Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high‐affinity and high‐specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody‐Bind (AB‐Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB‐Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16–0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < −1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction.  相似文献   

7.
An engineered monomeric chorismate mutase (mMjCM) has been found to combine high catalytic activity with the characteristics of a molten globule. To gain insight into the dramatic structural changes that accompany binding of a transition-state analog, we examined mMjCM by isothermal calorimetry and compared it with its dimeric parent protein, MjCM (CM from Methanococcus jannaschii), a thermostable and conventionally folded enzyme. As expected for a ligand-induced ordering process, there is a large entropic penalty for binding to the monomer relative to the dimer (− TΔΔS = 5.1 ± 0.5 kcal/mol, at 20 °C). However, this unfavorable entropy term is largely offset by enthalpic gains (ΔΔH = − 3.5 ± 0.4 kcal/mol), presumably arising from tightening of non-covalent interactions throughout the monomeric complex. Stopped-flow kinetic measurements further reveal that the catalytic molten globule binds and releases ligands significantly faster than its natural counterpart, demonstrating that partial structural disorder can speed up molecular recognition. These results illustrate how structural plasticity may strongly perturb the thermodynamics and kinetics of transition-state recognition while negligibly affecting catalytic efficiency.  相似文献   

8.
Summary Xylanase from Scytalidium thermophilum was immobilized on Eudragit L-100, a pH sensitive copolymer of methacrylic acid and methyl methacrylate. The enzyme was non-covalently immobilized and the system expressed 70% xylanase activity. The immobilized preparation had broader optimum temperature of activity between 55 and 65 °C as compared to 65 °C in case of free enzyme and broader optimum pH between 6.0 and 7.0 as compared to 6.5 in case of free enzyme. Immobilization increased the t1/2 of enzyme at 60 °C from 15 to 30 min with a stabilization factor of 2. The Km and Vmax values for the immobilized and free xylanase were 0.5% xylan and 0.89 μmol/ml/min and 0.35% xylan and 1.01 μmol/ml/min respectively. An Arrhenius plot showed an increased value of activation energy for immobilized xylanase (227 kcal/mol) as compared to free xylanase (210 kcal/mol) confirming the higher temperature stability of the free enzyme. Enzymatic saccharification of xylan was also improved by xylanase immobilization.  相似文献   

9.
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH) and Eyring transition state entropies (ΔS). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.  相似文献   

10.
The Δ9-Tetrahydrocannabinol (THCA) is the primary psychoactive compound of Cannabis Sativa. It is produced by Δ1- Tetrahydrocannabinolic acid synthase (THCA) which catalyzes the oxidative cyclization of cannabigerolic acid (CBGA) the precursor of the THCA. In this study, we were interested by the three dimensional structure of THCA synthase protein. Generation of models were done by MODELLER v9.11 and homology modeling with Δ1-tetrahydrocannabinolic acid (THCA) synthase X ray structure (PDB code 3VTE) on the basis of sequences retrieved from GenBank. Procheck, Errat, and Verify 3D tools were used to verify the reliability of the six 3D models obtained, the overall quality factor and the Prosa Z-score were also used to check the quality of the six modeled proteins. The RMSDs for C-alpha atoms, main-chain atoms, side-chain atoms and all atoms between the modeled structures and the corresponding template ranged between 0.290 Å-1.252 Å, reflecting the good quality of the obtained models. Our study of the CBGA-THCA synthase docking demonstrated that the active site pocket was successfully recognized using computational approach. The interaction energy of CBGA computed in ‘fiber types’ proteins ranged between -4.1 95 kcal/mol and -5.95 kcal/mol whereas in the ‘drug type’ was about -7.02 kcal/mol to -7.16 kcal/mol, which maybe indicate the important role played by the interaction energy of CBGA in the determination of the THCA level in Cannabis Sativa L. varieties. Finally, we have proposed an experimental design in order to explore the binding energy source of ligand-enzyme in Cannabis Sativa and the production level of the THCA in the absence of any information regarding the correlation between the enzyme affinity and THCA level production. This report opens the doors to more studies predicting the binding site pocket with accuracy from the perspective of the protein affinity and THCA level produced in Cannabis Sativa.  相似文献   

11.
6-Phosphogluconate dehydrogenase (6PG) was purified from rat small intestine with 36% yield and a specific activity of 15 U/mg. On SDS/PAGE, one band with a mass of 52 kDa was found. On native PAGE three protein and two activity bands were observed. The pH optimum was 7.35. Using Arrhenius plots, Ea, ΔH, Q10 and Tm for 6PGD were found to be 7.52 kcal/mol, 6.90 kcal/mol, 1.49 and 49.4°C, respectively. The enzyme obeyed “Rapid Equilibrium Random Bi Bi” kinetic model with Km values of 595 ± 213 μM for 6PG and 53.03±1.99 μM for NADP. 1/Vm versus 1/6PG and 1/NADP plots gave a Vm value of 8.91±1.92 U/mg protein. NADPH is the competitive inhibitor with a Ki of 31.91±1.31 μM. The relatively small Ki for the 6PGD:NADPH complex indicates the importance of NADPH in the regulation of the pentose phosphate pathway through G6PD and 6PGD.  相似文献   

12.
HIV-1 envelope glycoprotein is reported to interact with α4β7, an integrin mediating the homing of lymphocytes to gut-associated lymphoid tissue, but the significance of α4β7 in HIV-1 infection remains controversial. Here, using HIV-1 strain Ba L, the gp120 of which was previously shown to be capable of interacting with α4β7, we demonstrated that α4β7 can mediate the binding of whole HIV-1 virions to α4β7-expressing transfectants. We further constructed a cell line stably expressing α4β7 and confirmed the α4β7-mediated HIV-1 binding. In primary lymphocytes with activated α4β7 expression, we also observed significant virus binding which can be inhibited by an anti-α4β7 antibody. Moreover, we investigated the impact of antagonizing α4β7 on HIV-1 infection of primary CD4+ T cells. In α4β7-activated CD4+ T cells, both anti-α4β7 antibodies and introduction of shorthairpin RNAs specifically targeting α4β7 resulted in a decreased HIV-1 infection. Our findings indicate that α4β7 may serve as an attachment factor at least for some HIV-1 strains. The established approach provides a promising means for the investigation of other viral strains to understand the potential roles of α4β7 in HIV-1 infection.  相似文献   

13.
14.
Point mutations of the active-site residues Trp168, Tyr171, Trp275, Trp397, Trp570 and Asp392 were introduced to Vibrio carchariae chitinase A. The modeled 3D structure of the enzyme illustrated that these residues fully occupied the substrate binding cleft and it was found that their mutation greatly reduced the hydrolyzing activity against pNP-[GlcNAc]2 and colloidal chitin. Mutant W397F was the only exception, as it instead enhanced the hydrolysis of the pNP substrate to 142% and gave no activity loss towards colloidal chitin. The kinetic study with the pNP substrate demonstrated that the mutations caused impaired Km and kcat values of the enzyme. A chitin binding assay showed that mutations of the aromatic residues did not change the binding equilibrium. Product analysis by thin layer chromatography showed higher efficiency of W275G and W397F in G4–G6 hydrolysis over the wild type enzyme. Though the time course of colloidal chitin hydrolysis displayed no difference in the cleavage behavior of the chitinase variants, the time course of G6 hydrolysis exhibited distinct hydrolytic patterns between wild-type and mutants W275G and W397F. Wild type initially hydrolyzed G6 to G4 and G2, and finally G2 was formed as the major end product. W275G primarily created G2–G5 intermediates, and later G2 and G3 were formed as stable products. In contrast, W397F initially produced G1–G5, and then the high-Mr intermediates (G3–G5) were broken down to G1 and G2 end products. This modification of the cleavage patterns of chitooligomers suggested that residues Trp275 and Trp397 are involved in defining the binding selectivity of the enzyme to soluble substrates.  相似文献   

15.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

16.
Endothelin-1 (ET-1) is a potent mitogen that transmits signals through its cognate G protein-coupled receptors to stimulate extracellular signal-regulated kinase Erk1/2. Endothelin-1 receptors (ET-Rs) are known to interact with caveolin-1 and co-localize in caveolae which integrate different receptor and signaling proteins. We have recently shown that β1Pix binds specifically to ET-Rs. Here, we show that β1Pix binding to caveolin-1 is dependent on heterotrimeric G proteins activation state. β1Pix interaction with different G proteins is increased in the presence of the G protein activator AMF. Moreover, extraction of cholesterol with methyl-β-cyclodextrin disrupts the binding of β1Pix to Gαq, Gα12 and phospho-Erk1/2 but not the binding of β1Pix to Gβ1. The disruption of β1Pix dimerization strongly reduced the binding of caveolin-1, Gαq and Gα12. Constitutively active mutants of Gαq and Gα12 increased Cdc42 activation when co-expressed with β1Pix but not in the presence of β1Pix dimerization deficient mutant β1PixΔ (602-611). ET-1 stimulation increased the binding of phosphorylated Erk1/2 to β1Pix but not to β1PixΔ (602-611). RGS3 decreased ET-1-induced Cdc42 activation. These results strongly suggest that the activation of ET-Rs leads to the compartmentalization and the binding of Gαq to β1Pix in caveolae, where dimeric β1Pix acts as platform to facilitate the binding and the activation of Erk1/2.  相似文献   

17.
To determine dietary effects on circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and enzyme activity in peripheral blood mononuclear cells (PBMCs), 99 patients with impaired fasting glucose, impaired glucose tolerance, or newly-diagnosed T2D were randomly assigned to either a control group (usual diet with refined rice) or the whole grain and legume group. Substitution of whole grains and legumes for refined rice was associated with the replacement of 7% of energy from carbohydrates with energy from protein (about 4%) and fat. After 12 weeks, the whole grain and legume group showed a significant decrease in fasting glucose, insulin, homeostasis model assessment-insulin resistance, hemoglobin A1c, malondialdehyde, plasma Lp-PLA2 activity, and oxidized LDL (ox-LDL), and an increase in LDL particle size. The changes (Δs) in these variables in the whole grain and legume group were significantly different from those in controls after adjustment for the baseline levels. When all subjects were considered, Δ plasma Lp-PLA2 positively correlated with Δ glucose, Δ PBMC Lp-PLA2, Δ ox-LDL, and Δ urinary 8-epi-prostaglandin F after being adjusted for confounding factors. The Δ PBMC Lp-PLA2 correlated positively with Δ glucose and Δ ox-LDL, and negatively with Δ LDL particle size and baseline PBMC Lp-PLA2. The substitution of whole grains and legumes for refined rice resulted in a reduction in Lp-PLA2 activities in plasma and PBMCs partly through improved glycemic control, increased consumption of protein relative to carbohydrate, and reduced lipid peroxides.  相似文献   

18.
The protein G18 (also known as AGS4 or GPSM3) contains three conserved GoLoco/GPR domains in its central and C-terminal regions that bind to inactive Gαi, whereas the N-terminal region has not been previously characterized. We investigated whether this domain might itself regulate G protein activity by assessing the abilities of G18 and mutants thereof to modulate the nucleotide binding and hydrolytic properties of Gαi1 and Gαo. Surprisingly, in the presence of fluoroaluminate (AlF4) both G proteins bound strongly to full-length G18 (G18wt) and to its isolated N-terminal domain (G18ΔC) but not to its GoLoco region (ΔNG18). Thus, it appears that its N-terminal domain promotes G18 binding to fluoroaluminate-activated Gαi/o. Neither G18wt nor any G18 mutant affected the GTPase activity of Gαi1 or Gαo. In contrast, complex effects were noted with respect to nucleotide binding. As inferred by the binding of [35S]GTPγS (guanosine 5′-O-[γ-thio]triphosphate) to Gαi1, the isolated GoLoco region as expected acted as a guanine nucleotide dissociation inhibitor, whereas the N-terminal region exhibited a previously unknown guanine nucleotide exchange factor effect on this G protein. On the other hand, the N terminus inhibited [35S]GTPγS binding to Gαo, albeit to a lesser extent than the effect of the GoLoco region on Gαi1. Taken together, our results identify the N-terminal region of G18 as a novel G protein-interacting domain that may have distinct regulatory effects within the Gi/o subfamily, and thus, it could potentially play a role in differentiating signals between these related G proteins.  相似文献   

19.
Ca2+-independent phospholipase A2β (iPLA2β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA2β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M1,3,5 receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA2β−/−, iPLA2β+/−, and iPLA2β+/+ mice, and [1-14C]DHA was infused intravenously. DHA incorporation coefficients k* and rates Jin, representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA2β−/− or iPLA2β+/− compared with iPLA2β+/+ mice showed widespread and significant baseline reductions in k* and Jin for DHA. Arecoline increased both parameters in brain regions of iPLA2β+/+ mice but quantitatively less so in iPLA2β−/− and iPLA2β+/− mice. Consistent with iPLA2β’s reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA2β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M1,3,5 receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.  相似文献   

20.
Background and AimPredicting novel dual inhibitors to combat adverse effects such as the development of resistance to vemurafenib in melanoma treatment due to the reactivation of MAPK and PI3K/AKT signaling pathways is studied to help in reversal of cancer symptoms.Reversal of cancer symptoms in melanoma associated with vemurafenib resistance is driven by reactivation of MAPK and PI3K/Akt signaling pathways. Novel dual inhibitors targeting these proteins would be beneficial to combat resistance.MethodsHigh-throughput virtual screening of the ChemBridge library against B-RAFV600E and Akt was performed using an automated protocol with the AutoDock VINA program. Luminescence and time-resolved fluorescence kits were used to measure enzyme activities. The MTT assay was used to determine proliferation in normal and vemurafenib-resistant A375 cells. Flow cytometry was used to examine apoptosis, cell cycle, and phosphorylation of ERK/Akt signaling pathway.ResultsHigh-throughput screening from the ChemBridge library identified 15 compounds with high binding energy towards B-RAFV600E; among these, CB-RAF600E-1 had the highest ΔGbinding score −11.9 kcal/mol. The compound also had a high affinity towards Akt, with a ΔGbinding score of −11.5 kcal/mol. CB-RAF600E-1 dose-dependently inhibited both B-RAFV600E and Akt with IC50 values of 635 nM and 154.3 nM, respectively. The compound effectively controlled the proliferations of normal and vemurafenib-resistant A375 cells, with GI50 values of 222.3 nM and 230.5 nM, respectively. A dose-dependent increase in the sub G0/G1 phase of the cell cycle and total apoptosis was observed following compound treatment in both normal and vemurafenib-resistant melanoma cells. Treatment with CB-RAF600E-1 decreased the pERK/pAkt dual-positive populations in normal and vemurafenib-resistant A375 cells.ConclusionCB-RAF600E-1, identified as a novel dual inhibitor effective against normal and vemurafenib-resistant melanoma cells, requires further attention for development as an effective chemotherapeutic agent for melanoma management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号