首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Nontandem segmental duplications provide a useful alternative to conventional recombination mapping for determining gene order in a haploid organism such asNeurospora. When an insertional or terminal rearrangement is crossed by Normal sequence, a class of progeny is produced that have a precisely delimited chromosome segment duplicated. In such Duplication progeny, a recessive gene in the Normal-sequence donor chromosome may or may not be masked (“covered”) by its dominant wild-type allele in the translocation-sequence recipient chromosome. Coverage depends upon whether the gene in question is left or right of the rearrangement breakpoint. The recessive gene will be heterozygous and covered (not expressed) if its locus is within the duplicated segment, but it will be haploid and expressed if the locus is outside the segment. Not only genes but also centromeres can be mapped by means of duplications, because genes included in. the same viable duplication must reside in the same chromosome arm. - Numerous sequences in the current genetic maps ofN. crassa have been determined using duplications. Gene order in the albino region and in the centromere region of linkage group I provide examples. Over 50 insertional or terminal rearrangements are available from which nontandem duplications of defined content can be obtained at will; collectively these cover about 75% of the genome. - Intercrosses between partially overlapping chromosome rearrangements also produce Duplication progeny containing two copies of regions between the breakpoints. The 180 mapped reciprocal translocations and inversions include numerous overlapping combinations that can be used for duplication mapping.  相似文献   

2.

Background  

Filamentous fungi synthesize many secondary metabolites and are rich in genes encoding proteins involved in their biosynthesis. Genes from the same pathway are often clustered and co-expressed in particular conditions. Such secondary metabolism gene clusters evolve rapidly through multiple rearrangements, duplications and losses. It has long been suspected that clusters can be transferred horizontally between species, but few concrete examples have been described so far.  相似文献   

3.
4.
Zhou D  Zhou J  Meng L  Wang Q  Xie H  Guan Y  Ma Z  Zhong Y  Chen F  Liu J 《Gene》2009,441(1-2):36-44
Plants have evolved diverse adaptive mechanisms that enable them to tolerate abiotic stresses, to varying degrees, and such stresses may have strongly influenced evolutionary changes at levels ranging from molecular to morphological. Previous studies on these phenomena have focused on the adaptive evolution of stress-related orthologous genes in specific lineages. However, heterogenetic evolution of the paralogous genes following duplication has only been examined in a very limited number of stress-response gene families. The COR15 gene encodes a low molecular weight protein that plays an important role in protecting plants from cold stresses. Although two different copies of this gene have been found in the model species, Arabidopsis thaliana, evolutionary patterns of this small gene family in plants have not been previously explored. In this study, we cloned COR15-like sequences and performed evolutionary analyses of these sequences (including those previously reported) in the highly cold-tolerant Draba lineage and related lineages of Brassicaceae. Our phylogenetic analyses indicate that all COR15-like sequences clustered into four clades that corresponded well to the morphological lineages. Gene conversions were found to have probably occurred before/during the divergence of Brassica and Draba lineage. However, repeated, independent duplications of this gene have occurred in different lineages of Brassicaceae. Further comparisons of all sequences suggest that there have been significant inter-lineage differences in evolutionary rates between the duplicated and original genes. We assessed the likelihood that the differences between two well-supported gene subfamilies that appear to have originated from a single duplication, COR15a and COR15b, within the Draba lineage have been driven by adaptive evolution. Comparisons of their non-synonymous/synonymous substitution ratios and rates of predicted amino acid changes indicate that these two gene groups are evolving under different selective pressures and may be functionally divergent. This functional divergence was confirmed by comparing site-specific shifts in evolution indexes of the two groups of predicted proteins. The evidence of differential selection and possible functional divergence suggests that the duplication may be of adaptive significance, with possible implications for the explosive diversification of the Draba lineage during the cooling Quaternary stages and the following worldwide colonization of arid alpine and artic regions.  相似文献   

5.
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

6.
Novel high-throughput genotyping technologies have facilitated rapid genotyping of single nucleotide polymorphisms in non-model organisms. Most plant species have complex genomes with a large proportion of their genes having one or more paralogous copies due to single gene duplications and ancient or recent polyploidization events. These paralogous gene copies are potential sources of genotyping errors, and hence genotyping of plant genomes is inherently difficult. Here we present a case study that exemplifies paralog-related problems in high-throughput genotyping of plant genomes. We used the MassARRAY genotyping platform to genotype the LpIRI locus in L. perenne populations; this gene is thought to be involved in low-temperature stress tolerance. The dissection of the molecular genetics underlying the genotyping results provides a good example of how unknown paralogs can mask the true genotype of the locus, instructive to the non-specialist plant researcher and breeder.  相似文献   

7.
Major increases in complexity during animal evolution occurred at the transition from a unicellular protozoan to a multicellular metazoan, the evolution of Bilateria from diploblasts (possibly the Cambrian explosion) and during early vertebrate evolution. A role for gene duplication in the third event has been widely discussed. Here I examine the possible role of gene duplications and domain shuffling in the first two events. There is evidence for a wave of gene duplications and shuffling which may have paved the way for multicellularity; there are also examples of gene duplications that may have facilitated the transition from diploblasts to Bilateria.  相似文献   

8.
ABSTRACT: BACKGROUND: The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. RESULTS: We sequenced psbA, which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. CONCLUSIONS: The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA, in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study, eleven co-evolving sites have been detected via different molecules, which may be more important than others.  相似文献   

9.
Intron 3 and the flanking exons of the calmodulin gene have been amplified, cloned, and sequenced from 18 members of the gastropod genus Littorina. From the 48 sequences, at least five different gene copies have been identified and their functionality characterized using a strategy based upon the potential protein product predicted from flanking exon data. The functionality analyses suggest that four of the genes code for functional copies of calmodulin. All five copies have been identified across a wide range of littorinid species although not ubiquitously. Using this novel approach based on intron sequences, we have identified an unprecedented number of potential calmodulin copies in Littorina, exceeding that reported for any other invertebrate. This suggests a higher number of, and more ancient, gene duplications than previously detected in a single genus.Reviewing Editor: Dr: Debashish Bhattacharya  相似文献   

10.
A whole‐genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid‐origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid‐origin species. We demonstrate a new method that enables genome‐wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus‐specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid‐origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.  相似文献   

11.
A degenerate ParaHox gene cluster in a degenerate vertebrate   总被引:1,自引:0,他引:1  
The ParaHox genes consist of 3 homeobox gene families, Gsx, Xlox, and Cdx, all of which have fundamental roles in development. Xlox (known as IPF1 or PDX1 in vertebrates), for example, is crucial for development of the vertebrate pancreas and is also involved in regulation of insulin expression. The invertebrate amphioxus has a gene cluster containing one gene from each of the gene families, whereas in all vertebrates examined to date there are additional copies resultant from ParaHox gene cluster duplications at the base of the vertebrate lineage. Extant vertebrates basal to bony and cartilaginous fish are central to the question of when and how these multiple genes arose in the vertebrate genome. Here, we report the mapping of a ParaHox gene cluster in 2 species of hagfishes. Unexpectedly, these basal vertebrates have lost a functional Xlox gene from this cluster, unlike every other vertebrate examined to date. Furthermore, our phylogenetic analyses suggest that hagfishes may have diverged from the vertebrate lineage before the duplications, which created the multiple ParaHox clusters in jawed vertebrates.  相似文献   

12.
Maximum likelihood analyses of DNA sequences from two chloroplast regions, trnL-trnF and atpB-rbcL, and the internal transcribed spacers of 18S-5.8S-26S rRNA gene array, were performed to resolve species relationships within the moss genus Hygroamblystegium. Constraining morphospecies to monophyly resulted in significantly less likely trees for H. tenax, but not for the other species. The lack of support for most clades and the partial incongruence among topologies necessitated the use of another independent, more variable region, namely the adenosine kinase gene (adk). Sequences for adk were polymorphic but were present as multiple copies within individuals, making parology a problem for phylogenetic analyses. Adk evolution was reconstructed using a reconciled gene tree approach in which duplications and losses were minimized in the context of an estimate of the species tree derived from the analysis of the cp and nrDNA sequence data. Additional resolution of the species tree was then obtained by searching for reconstructions that further reduced adk duplications and losses. All the traditionally recognized morphospecies appeared to be polyphyletic in the resulting tree. Together with previous data from different molecular markers, the results support the interpretation that Hygroamblystegium represents a recent radiation in which molecular and morphological evolution have been uncoupled.  相似文献   

13.
Homosporous ferns have extremely high chromosome numbers relative to flowering plants, but the species with the lowest chromosome numbers show gene expression patterns typical of diploid organisms, suggesting that they may be diploidized ancient polyploids. To investigate the role of polyploidy in fern genome evolution, and to provide permanent genetic resources for this neglected group, we constructed a high-resolution genetic linkage map of the homosporous fern model species, Ceratopteris richardii (n = 39). Linkage map construction employed 488 doubled haploid lines (DHLs) that were genotyped for 368 RFLP, 358 AFLP, and 3 isozyme markers. Forty-one linkage groups were recovered, with average spacing between markers of 3.18 cM. Most loci (approximately 76%) are duplicated and most duplicates occur on different linkage groups, indicating that as in other eukaryotic genomes, gene duplication plays a prominent role in shaping the architecture of fern genomes. Although past polyploidization is a potential mechanism for the observed abundance of gene duplicates, a wide range in the number of gene duplicates as well as the absence of large syntenic regions consisting of duplicated gene copies implies that small-scale duplications may be the primary mode of gene duplication in C. richardii. Alternatively, evidence of past polyploidization(s) may be masked by extensive chromosomal rearrangements as well as smaller-scale duplications and deletions following polyploidization(s).  相似文献   

14.
URec is a software based on a concept of unrooted reconciliation. It can be used to reconcile a set of unrooted gene trees with a rooted species tree or a set of rooted species trees. Moreover, it computes detailed distribution of gene duplications and gene losses in a species tree. It can be used to infer optimal species phylogenies for a given set of gene trees. URec is implemented in C++ and can be easily compiled under Unix and Windows systems. Availability: Software is freely available for download from our website at http://bioputer.mimuw.edu.pl/~gorecki/urec. This webpage also contains Windows executables and a number of advanced examples with explanations.  相似文献   

15.
16.
The last few decades have seen a growing number of species invasions globally, including many insect species. In drosophilids, there are several examples of successful invasions, i.e. Zaprionus indianus and Drosophila subobscura some decades ago, but the most recent and prominent example is the invasion of Europe and North America by the pest species, Drosophila suzukii. During the invasive process, species often encounter diverse environmental conditions that they must respond to, either through rapid genetic adaptive shifts or phenotypic plasticity, or by some combination of both. Consequently, invasive species constitute powerful models for investigating various questions related to the adaptive processes that underpin successful invasions. In this paper, we highlight how Drosophila have been and remain a valuable model group for understanding these underlying adaptive processes, and how they enable insight into key questions in invasion biology, including how quickly adaptive responses can occur when species are faced with new environmental conditions.  相似文献   

17.
Despite the numerous studies which have been conducted during the past decade on species ranges and their relationship to the environment, our understanding of how environmental conditions shape species distribution is still far from complete. Yet, some process-based species distribution models have been able to simulate plants and insects distribution at a global scale. These models strongly rely on the completion of the annual cycle of the species and therefore on their accomplished phenology. In particular, they have shown that the northern limit of species'' ranges appears to be caused mainly by the inability to undergo full fruit maturation, while the southern limit appears to be caused by the inability to flower or unfold leaves owing to a lack of chilling temperatures that are necessary to break bud dormancy. I discuss here why phenology is a key adaptive trait in shaping species distribution using mostly examples from plant species, which have been the most documented. After discussing how phenology is involved in fitness and why it is an adaptive trait susceptible to evolve quickly in changing climate conditions, I describe how phenology is related to fitness in species distribution process-based models and discuss the fate of species under climate change scenarios using model projections and experimental or field studies from the literature.  相似文献   

18.
Here we show that multiple DNA sequences, similar to the mitochondrial cytochrome oxidase I (COI) gene, occur within single individuals in at least 10 species of the snapping shrimp genus Alpheus. Cloning of amplified products revealed the presence of copies that differed in length and (more frequently) in base substitutions. Although multiple copies were amplified in individual shrimp from total genomic DNA (gDNA), only one sequence was amplified from cDNA. These results are best explained by the presence of nonfunctional duplications of a portion of the mtDNA, probably located in the nuclear genome, since transfer into the nuclear gene would render the COI gene nonfunctional due to differences in the nuclear and mitochondrial genetic codes. Analysis of codon variation suggests that there have been 21 independent transfer events in the 10 species examined. Within a single animal, differences between the sequences of these pseudogenes ranged from 0.2% to 20.6%, and those between the real mtDNA and pseudogene sequences ranged from 0.2% to 18.8% (uncorrected). The large number of integration events and the large range of divergences between pseudogenes and mtDNA sequences suggest that genetic material has been repeatedly transferred from the mtDNA to the nuclear genome of snapping shrimp. Unrecognized pseudogenes in phylogenetic or population studies may result in spurious results, although previous estimates of rates of molecular evolution based on Alpheus sister taxa separated by the Isthmus of Panama appear to remain valid. Especially worrisome for researchers are those pseudogenes that are not obviously recognizable as such. An effective solution may be to amplify transcribed copies of protein-coding mitochondrial genes from cDNA rather than using genomic DNA.  相似文献   

19.
20.
Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light-strand replication and the nearby tRNA genes or the regions flanking the origin of heavy-strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and nontandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mitochondrial DNAs, up to 25% of the total length is composed of tandem duplications of noncoding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with the otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intramolecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号