首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Singleton SF  Xiao J 《Biopolymers》2001,61(3):145-158
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA x tsDNA complex), has been elucidated by classical methods. Here we review the systematic characterization of the helical geometries of the three DNA strands of the RecA x tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. Measurements of the helical parameters for the RecA x tsDNA complex are consistent with the hypothesis that this complex is a late, poststrand-exchange intermediate with the outgoing strand shifted by about three base pairs with respect to its registry with the incoming and complementary strands. All three strands in the RecA x tsDNA complex adopt extended and unwound conformations similar to those of RecA-bound ssDNA and dsDNA.  相似文献   

2.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

3.
The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in which initially unbound dsDNA binds to the leading end of a RecA/ssDNA filament, while heteroduplex dsDNA unbinds from the lagging end via ATP hydrolysis. ATP hydrolysis is required to convert the active RecA conformation, which cannot unbind, to the inactive conformation, which can unbind. If dsDNA extension due to RecA binding increases the dsDNA tension, then RecA unbinding must decrease tension. We show that in the presence of ATP hydrolysis decreases in tension induce decreases in length whereas in the absence of hydrolysis, changes in tension have no systematic effect. These results suggest that decreases in force enhance dissociation by promoting transitions from the active to the inactive RecA conformation. In contrast, increases in tension reduce dissociation. Thus, the changes in tension inherent to strand exchange may couple with ATP hydrolysis to increase the directionality and stringency of strand exchange.  相似文献   

4.
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA-tsDNA complex), has been reported. We present a systematic characterization of the helical geometries of the three DNA strands of the RecA-tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. FRET donor and acceptor dyes were used to label different DNA strands, and the interfluorophore distances were inferred from energy transfer efficiencies measured as a function of the base-pair separation between the two dyes. The energy transfer efficiencies were first measured on a control RecA-dsDNA complex, and the calculated helical parameters (h approximately 5 A, Omega(h) approximately 20 degrees ) were consistent with structural conclusions derived from electron microscopy (EM) and other classic biochemical methods. Measurements of the helical parameters for the RecA-tsDNA complex revealed that all three DNA strands adopt extended and unwound conformations similar to those of RecA-bound dsDNA. The structural data are consistent with the hypothesis that this complex is a late, post-strand-exchange intermediate with the outgoing strand shifted by about three base-pairs with respect to its registry with the incoming and complementary strands. Furthermore, the bases of the incoming and complementary strands are displaced away from the helix axis toward the minor groove of the heteroduplex, and the bases of the outgoing strand lie in the major groove of the heteroduplex. We present a model for the strand exchange intermediate in which homologous contacts preceding strand exchange arise in the minor groove of the substrate dsDNA.  相似文献   

5.
Chen LT  Ko TP  Chang YW  Lin KA  Wang AH  Wang TF 《PloS one》2007,2(9):e858
RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filament with three monomers per helical pitch. This structure reveals conformational details of the first ssDNA binding disordered loop (denoted L1 motif) and the dsDNA binding N-terminal domain (NTD). L1 and NTD together form an outwardly open palm structure on the outer surface of the helical filament. Inside this palm structure, five conserved basic amino acid residues (K27, K60, R117, R223 and R229) surround a 25 A pocket that is wide enough to accommodate anionic ssDNA, dsDNA or both. Biochemical analyses demonstrate that these five positively charged residues are essential for DNA binding and for RadA-catalyzed D-loop formation. We suggest that the overwound right-handed RadA filament represents a functional conformation in the homology search and pairing reaction. A new structural model is proposed for the homologous interactions between a RadA-ssDNA nucleoprotein filament and its dsDNA target.  相似文献   

6.
RecA and Rad51 proteins play an important role in DNA repair and homologous recombination. For RecA, X-ray structure information and single molecule force experiments have indicated that the differential extension between the complementary strand and its Watson–Crick pairing partners promotes the rapid unbinding of non-homologous dsDNA and drives strand exchange forward for homologous dsDNA. In this work we find that both effects are also present in Rad51 protein. In particular, pulling on the opposite termini (3′ and 5′) of one of the two DNA strands in a dsDNA molecule allows dsDNA to extend along non-homologous Rad51-ssDNA filaments and remain stably bound in the extended state, but pulling on the 3′5′ ends of the complementary strand reduces the strand-exchange rate for homologous filaments. Thus, the results suggest that differential extension is also present in dsDNA bound to Rad51. The differential extension promotes rapid recognition by driving the swift unbinding of dsDNA from non-homologous Rad51-ssDNA filaments, while at the same time, reducing base pair tension due to the transfer of the Watson–Crick pairing of the complementary strand bases from the highly extended outgoing strand to the slightly less extended incoming strand, which drives strand exchange forward.  相似文献   

7.
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.  相似文献   

8.
To accomplish its DNA strand exchange activities, the Escherichia coli protein RecA polymerizes onto DNA to form a stiff helical nucleoprotein filament within which the DNA is extended by 50%. Homology search and recognition occurs between ssDNA within the filament and an external dsDNA molecule. We show that stretching the internal DNA greatly enhances homology recognition by increasing the probability that the homologous regions of a stretched DNA molecule and a parallel, unstretched DNA molecule will be "in register" at some position. We also show that the stretching and stiffness of the filament act together to ensure that initiation of homologous exchange between the substrate DNA molecules at one position precludes initiation of homologous exchange at any other position. This prevents formation of multiple exchange site "topological traps" which would prevent completion of the exchange reaction and resolution of the products.  相似文献   

9.
To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.  相似文献   

10.
RecA family proteins are responsible for homology search and strand exchange. In bacteria, homology search begins after RecA binds an initiating single-stranded DNA (ssDNA) in the primary DNA-binding site, forming the presynaptic filament. Once the filament is formed, it interrogates double-stranded DNA (dsDNA). During the interrogation, bases in the dsDNA attempt to form Watson–Crick bonds with the corresponding bases in the initiating strand. Mismatch dependent instability in the base pairing in the heteroduplex strand exchange product could provide stringent recognition; however, we present experimental and theoretical results suggesting that the heteroduplex stability is insensitive to mismatches. We also present data suggesting that an initial homology test of 8 contiguous bases rejects most interactions containing more than 1/8 mismatches without forming a detectable 20 bp product. We propose that, in vivo, the sparsity of accidental sequence matches allows an initial 8 bp test to rapidly reject almost all non-homologous sequences. We speculate that once the initial test is passed, the mismatch insensitive binding in the heteroduplex allows short mismatched regions to be incorporated in otherwise homologous strand exchange products even though sequences with less homology are eventually rejected.  相似文献   

11.
Frykholm K  Morimatsu K  Nordén B 《Biochemistry》2006,45(37):11172-11178
RecA protein and its eukaryotic homologue Rad51 protein catalyzes the DNA strand exchange, which is a key reaction of homologous recombination. At the initial step of the reaction, RecA proteins form a helical filament on a single-stranded DNA (ssDNA). Binding of double-stranded DNA (dsDNA) to the filament triggers the homology search; as homology is found, the exchange of strands occurs, and the displaced DNA is released. These are the principal steps of genetic recombination; however, despite many years of extensive study of RecA activities, the details of the mechanism are still obscure. A high-resolution structure of the active nucleoprotein filament could provide information to help understand this process. Using a linear dichroism polarized-light spectroscopy technique, in combination with protein engineering (the site-specific linear dichroism method), we have previously studied the arrangement of RecA in complex with ssDNA. In the present study, we have used this approach to search for structural variations of RecA at the atomic level as the DNA in the complex is changed from ssDNA to dsDNA. The structural data of the RecA-dsDNA filament are found to be very similar to the data previously obtained for the RecA-ssDNA complex, indicating that the overall orientation and also the internal structure of RecA in the active filament are not markedly altered when the bound DNA changes from single- to double-stranded. The implications of the structural similarities as well as the significance of some conformational variations observed for a few amino acid residues that may be involved in interactions with DNA are discussed.  相似文献   

12.
Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson–Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.  相似文献   

13.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally indistinguishable from paranemic joints; (ii) complexes which appeared to be joined both paranemically and plectonemically were present in these reactions in roughly equal numbers; and (iii) in complexes undergoing strand exchange, both DNA partners were often enveloped within a RecA protein filament consisting of hundreds of RecA protein monomers and several kilobases of DNA. These observations suggest that, following RecA protein-ssDNA filament formation, strand exchange proceeds by a pathway that can be divided structurally into three phases: pairing, envelopment/exchange, and release of the products.  相似文献   

14.
RecA binds to single-stranded (ss) DNA to form?a helical filament that catalyzes strand exchange with a homologous double-stranded (ds) DNA. The study of strand exchange in ensemble assays is limited by the diffusion limited homology search process, which masks the subsequent strand exchange reaction. We developed a single-molecule fluorescence assay with a few base-pair and millisecond resolution that can separate initial docking from the subsequent propagation of joint molecule formation. Our data suggest that propagation occurs in 3?bp increments with destabilization of the incoming dsDNA and concomitant pairing with the reference ssDNA. Unexpectedly, we discovered the formation of?a dynamic complex between RecA and the displaced DNA that remains bound transiently after joint molecule formation. This finding could have important implications for the irreversibility of strand exchange. Our model for strand exchange links structural models of RecA to its catalytic function.  相似文献   

15.
According to one prominent model, each protomer in the activated nucleoprotein filament of homologous recombinase RecA possesses two DNA-binding sites. The primary site binds (1) single-stranded DNA (ssDNA) to form presynaptic complex and (2) the newly formed double-stranded (ds) DNA whereas the secondary site binds (1) dsDNA of a partner to initiate strand exchange and (2) the displaced ssDNA following the strand exchange. RecA protein from Pseudomonas aeruginosa (RecAPa) promotes in Escherichia coli hyper-recombination in an SOS-independent manner. Earlier we revealed that RecAPa rapidly displaces E.coli SSB protein (SSB-Ec) from ssDNA to form presynaptic complex. Here we show that this property (1) is based on increased affinity of ssDNA for the RecAPa primary DNA binding site while the affinity for the secondary site remains similar to that for E.coli RecA, (2) is not specific for SSB-Ec but is also observed for SSB protein from P.aeruginosa that, in turn, predicts a possibility of enhanced recombination repair in this pathogenic bacterium.  相似文献   

16.
The defining event in homologous recombination is the exchange of base-paired partners between a single-stranded (ss) DNA and a homologous duplex driven by recombinase proteins, such as human RAD51. To understand the mechanism of this essential genome maintenance event, we analyzed the structure of RAD51–DNA complexes representing strand exchange intermediates at nanometer resolution by scanning force microscopy. Joint molecules were formed between substrates with a defined ssDNA segment and homologous region on a double-stranded (ds) partner. We discovered and quantified several notable architectural features of RAD51 joint molecules. Each end of the RAD51-bound joints had a distinct structure. Using linear substrates, a 10-nt region of mispaired bases blocked extension of joint molecules in all examples observed, whereas 4 nt of heterology only partially blocked joint molecule extension. Joint molecules, including 10 nt of heterology, had paired DNA on either side of the heterologous substitution, indicating that pairing could initiate from the free 3′end of ssDNA or from a region adjacent to the ss–ds junction. RAD51 filaments covering joint ss–dsDNA regions were more stable to disassembly than filaments covering dsDNA. We discuss how distinct structural features of RAD51-bound DNA joints can play important roles as recognition sites for proteins that facilitate and control strand exchange.  相似文献   

17.
The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction.  相似文献   

18.
RecA first forms a filament on single-stranded DNA (ssDNA), thereby forming the first site for ssDNA binding and, simultaneously, the second site for binding double-stranded DNA (dsDNA). Then, the nucleoprotein filament interacts with dsDNA, although it can bind ssDNA as well. The resulting complex searches for homology sites and performs strand exchange between homologous DNA molecules. The interaction of various ssDNAs with the second DNA-recognizing site of RecA was studied by gradually increasing the structural complexity of the DNA ligand. Recognizing ssDNA with the second site, the protein interacts with each nucleotide of the ligand, forming contacts with both internucleotide phosphate groups and nitrogen bases. Pyrimidine oligonucleotides d(pC) n and d(pT) n interacted with the second site of the RecA filament more efficiently than d(pA) n did. This was due to a more efficient interaction of the RecA filament with the 5′-terminal nucleotide of pyrimidinic DNA and to the difference in specific conformational changes of the nucleoprotein filament in the presence of purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition at the first and second DNA-binding sites of the filament showed that, at n > 10, d(pC) n and d(pN) n were bound at the second site less tightly than at the first site. At n > 20, the second site bound d(pA) n more efficiently than the first site. The difference in d(pN) n affinity for the first and second sites increased monotonically with increasing n. Possible mechanisms of a RecA-dependent search for homology and DNA strand exchange are discussed.  相似文献   

19.
Bacillus subtilis RecO plays a central role in recombinational repair and genetic recombination by (i) stimulating RecA filamentation onto SsbA-coated single-stranded (ss) DNA, (ii) modulating the extent of RecA-mediated DNA strand exchange and (iii) promoting annealing of complementary DNA strands. Here, we report that RecO-mediated strand annealing is facilitated by cognate SsbA, but not by a heterologous one. Analysis of non-productive intermediates reveals that RecO interacts with SsbA-coated ssDNA, resulting in transient ternary complexes. The self-interaction of ternary complexes via RecO led to the formation of large nucleoprotein complexes. In the presence of homology, SsbA, at the nucleoprotein, removes DNA secondary structures, inhibits spontaneous strand annealing and facilitates RecO loading onto SsbA–ssDNA complex. RecO relieves SsbA inhibition of strand annealing and facilitates transient and random interactions between homologous naked ssDNA molecules. Finally, both proteins lose affinity for duplex DNA. Our results provide a mechanistic framework for rationalizing protein release and dsDNA zippering as coordinated events that are crucial for RecA-independent plasmid transformation.  相似文献   

20.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号