首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SV40 belongs to a group of DNA tumor viruses which induce the expression of the 70 Kd heat shock proteins, but the meaning of this induction remains unclear. Investigating the role of hsc70 in the SV40 life cycle, we found that the protein translocates to the nucleus late in infection of permissive CV1 cells, in contrast to infected nonpermissive BALB/3T3 and NIH/3T3 cells in which hsc70 remains cytoplasmic. Moreover, the pattern of hsc70 nuclear staining was diffused and clearly distinguishable from that observed after heat shock. In addition hsc70 late in infection coimmunoprecipitated with the viral capsid protein VP1, suggesting a role in the process of viral packaging. Interactions of hsc70 with the early viral oncoprotein T antigen were observed only in nonpermissive cells, indicating that the binding of the above proteins is specific to cells that do not support viral propagation. Finally, treatment of permissive CV1 cells with interferon gamma, a known antiviral cytokine, resulted in hsc70 binding to T antigen. Our results suggest that the role of hsc70 in the process of SV40 infection is directly related to the ability of the host cells to support viral propagation and is clearly different between permissive and nonpermissive cell lines.  相似文献   

2.
The 70-kDa heat shock protein hsp70 and its constitutively expressed cognate, hsc70, are abundant proteins implicated in a number of cellular processes. When a permeabilized cell system for examining the transport of proteins into the nucleus is depleted of hsc70 and hsp70, either by affinity chromatography on ATP-agarose or with antibodies against these proteins, nuclear transport activity is lost. Full activity is restored by the addition of HeLa proteins that bind to ATP-agarose. hsc70 and hsp70 are the active factors, since activity is also fully restored by the addition of either recombinant hsc70 or hsp70 which has been bacterially expressed and highly purified. The restoration of activity is saturable. The transport system requires other cytosolic factors as well, including at least one protein that is sensitive to inactivation by N-ethylmaleimide, but neither hsc70 nor hsp70 is the sensitive protein.  相似文献   

3.
Shishido-Hara Y 《Uirusu》2006,56(1):17-25
Human polyomavirus JC (JCV) is a causative agent for progressive multifocal leukoencephalopathy, a fatal demyelinating disorder. The viruses form intranuclear viral inclusions in infected oligodendrocytes. The outer capsid of JCV is thought to be composed of 360 molecules of major capsid protein VP1, and minor capsid proteins VP2 and VP3 in an appropriate ratio. However, the regulatory mechanisms of gene expression for the capsid proteins, their nuclear transport, and formation of viral inclusions are not well understood. We have recently clarified the following regarding the mechanism underlying JCV virion assembly; (i) major and minor capsid proteins are synthesized from messenger RNAs, the expression ratio of which is determined by alternative splicing, (ii) messenger RNAs for the major and minor capsid proteins are polycistronic, and their translation occurs downstream of the regulatory protein, agnoprotein, (iii) major and minor capsid proteins are translocated to the nucleus in a cooperative manner and accumulate at the dot-shaped intranuclear structures called promyelocytic leukemia nuclear bodies (PML-NBs), (iv) efficient viral replication can occur at the PML-NBs, where capsid assembly is likely to be associated with viral DNA replication. PML-NBs are the sites for expression of important nuclear functions for the host cells. The finding that the target of JCV infection is the PML-NB may contribute greatly to our understanding of the mechanism underlying cellular degeneration, which occurs after the formation of intranuclear viral inclusions.  相似文献   

4.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

5.
Using the p2Bac dual multiple cloning site transfer vector, the polyomavirus major capsid protein gene VP1 was cloned for expression in the baculovirus-insect cell expression system. The 5-day-infected cellular lysate from this recombinant preparation was purified by cesium chloride density gradient centrifugation. Capsid-like particles were observed in the resulting preparation. The purified particle preparation was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was shown to have accurately expressed the polyomavirus VP1 protein as cloned. It was found that the preparation revealed the presence of host histones in the stained gels, which is indicative of DNA packaging. To determine if cellular DNA was being packaged in the particles, Sf9 insect cells were prelabeled with [3H] thymidine. The label was removed, and the cells were subsequently infected with a recombinant Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) carrying the polyomavirus VP1 gene. Upon purification through three cesium chloride gradients and DNase I treatment, capsid-like particles, containing [3H]thymidine-labeled DNA, were isolated which were found to coincide with hemagglutination activity. Studies have indicated that the AcMNPV appears to have the ability to fragment Sf9 cellular DNA. When infected with the recombinant AcMNPV carrying the VP1 gene of polyomavirus, these host DNA fragments are being packaged by the VPI major capsid protein; further, these DNA fragments have been shown to be approximately 5 kb in size, which corresponds to the size of the native polyomavirus genome. These studies demonstrate that the recombinant polyomavirus VP1 protein has the ability to package DNA in the absence of the minor structural proteins VP2 and VP3 and independently of the polyomavirus T antigens.  相似文献   

6.
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.  相似文献   

7.
Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.  相似文献   

8.
The polyomavirus minor late capsid antigen, VP2, is myristylated on its N-terminal glycine, this modification being required for efficient infection of mouse cells. To study further the functions of this antigen, as well as those of the other minor late antigen, VP3, recombinant baculoviruses carrying genes for VP1, VP2, and VP3 have been constructed and the corresponding proteins have been synthesized in insect cells. A monoclonal antibody recognizing VP1, alpha-PyVP1-A, and two monoclonal antibodies against the common region of VP2 and VP3, alpha-PyVP2/3-A and alpha-PyVP2/3-B, have been generated. Reactions of antibodies with antigens were characterized by indirect immunofluorescence, immunoprecipitation, and immunoblot analysis. Immunofluorescent staining of mouse cells infected with polyomavirus showed all antigens to be localized in nuclei. When the late polyomavirus proteins were expressed separately in insect cells, however, only VP1 was efficiently transported into the nucleus; VP2 was localized discretely around the outside of the nucleus, and VP3 exhibited a diffused staining pattern in the cytoplasm. Coexpression of VP2, or VP3, with VP1 restored nuclear localization. Immunoprecipitation of infected mouse cells with either anti-VP1 or anti-VP2/3 antibodies precipitated complexes containing all three species, consistent with the notion that VP1 is necessary for efficient transport of VP2 and VP3 into the nucleus. Purified empty capsid-like particles, formed in nuclei of insect cells coinfected with all three baculoviruses, contained VP2 and VP3 proteins in amounts comparable to those found in empty capsids purified from mouse cells infected with wild-type polyomavirus. Two-dimensional gel analysis of VP1 species revealed that coexpression with VP2 affects posttranslational modification of VP1.  相似文献   

9.
The Karolinska Institutet and Washington University polyomaviruses (KIPyV and WUPyV, respectively) are recently discovered human viruses that infect the respiratory tract. Although they have not yet been linked to disease, they are prevalent in populations worldwide, with initial infection occurring in early childhood. Polyomavirus capsids consist of 72 pentamers of the major capsid protein viral protein 1 (VP1), which determines antigenicity and receptor specificity. The WUPyV and KIPyV VP1 proteins are distant in evolution from VP1 proteins of known structure such as simian virus 40 or murine polyomavirus. We present here the crystal structures of unassembled recombinant WUPyV and KIPyV VP1 pentamers at resolutions of 2.9 and 2.55 Å, respectively. The WUPyV and KIPyV VP1 core structures fold into the same β-sandwich that is a hallmark of all polyomavirus VP1 proteins crystallized to date. However, differences in sequence translate into profoundly different surface loop structures in KIPyV and WUPyV VP1 proteins. Such loop structures have not been observed for other polyomaviruses, and they provide initial clues about the possible interactions of these viruses with cell surface receptors.  相似文献   

10.
In all eukaryotes examined so far, hsp70 gene families include cognate genes (hsc70) encoding proteins of about 70 Kd which are expressed constitutively during normal growth and development. We have investigated the structural relationship of heat-inducible and cognate members of the human hsp70 gene family. Among several human genomic clones isolated using Drosophila hsp/hsc70 probes, one contained an hsc70 gene. Its complete sequence is reported here. It is split by eight introns and encodes a predicted protein of 70899 d that would be 81% homologous to hsp70. Structural comparisons with corresponding genes from other species provide one of the most striking examples of gene conservation. Isolation of a corresponding cDNA clone, RNA-mapping and in vitro translation data demonstrate that the gene is expressed constitutively and directs the synthesis of a 71 kd protein. The latter is very likely to be identical to a clathrin uncoating ATPase recently identified as a member of the hsp70-like protein family.  相似文献   

11.
The polyomavirus VP2 and VP3 capsid proteins were expressed in Escherichia coli. The majority of the expressed proteins were in an insoluble fraction, and they were extracted and initially purified in 8 M urea before renaturation. Soluble VP2 and VP3 were mixed with purified recombinant VP1 capsomeres, and their interactions were assayed by immunoprecipitation and ion-exchange chromatography. Coimmunoprecipitation could be demonstrated with antibodies to either VP1 or VP2/VP3. Mixing recombinant VP1 with VP2 and VP3 modified the recognition of VP1 by domain-specific antipeptide antibodies and altered the chromatographic behavior of the individual proteins. Similar results were observed when a truncated VP1 protein, delta NCOVP1, with 62 amino acids deleted from the carboxy terminus was mixed with VP2/VP3. After the mixing, equilibrium dissociation constants for their binding to either VP1 or delta NCOVP1 were determined to be 0.37 +/- 0.23 microM for VP2 and 0.18 +/- 0.21 microM for VP3. These studies demonstrate that the recombinant VP2 and VP3 proteins interact with VP1 to affect the biochemical properties of VP1 capsomeres and to change the epitope accessibility of VP1 pentamers. These changes may reflect conformational alterations in VP1 capsomeres which are necessary for viral genome encapsidation.  相似文献   

12.
The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.  相似文献   

13.
This report describes the distribution of conventional nuclear localization sequences (NLS) and of a beta-stranded so-called nuclear localization motif (NLM) in the two proteins (VP1, 82 kDa; VP2, 63 kDa) forming the T=1 icosahedral capsid of the parvovirus minute virus of mice (MVM) and their functions in viral biogenesis and the onset of infection. The approximately 10 VP1 molecules assembled in the MVM particle harbor in its 142-amino-acid (aa) N-terminal-specific region four clusters of basic amino acids, here called BC1 (aa 6 to 10), BC2 (aa 87 to 90), BC3 (aa 109 to 115), and BC4 (aa 126 to 130), that fit consensus NLS and an NLM placed toward the opposite end of the polypeptide (aa 670 to 680) found to be necessary for VP2 nuclear uptake. Deletions and site-directed mutations constructed in an infectious MVM plasmid showed that BC1, BC2, and NLM are cooperative nuclear transport sequences in singly expressed VP1 subunits and that they conferred nuclear targeting competence on the VP1/VP2 oligomers arising in normal infection, while BC3 and BC4 did not display nuclear transport activity. Notably, VP1 proteins mutated at BC1 and -2, and particularly with BC1 to -4 sequences deleted, induced nuclear and cytoplasmic foci of colocalizing conjugated ubiquitin that could be rescued from the ubiquitin-proteasome degradation pathway by the coexpression of VP2 and NS2 isoforms. These results suggest a role for VP2 in viral morphogenesis by assisting cytoplasmic folding of VP1/VP2 subviral complexes, which is further supported by the capacity of NLM-bearing transport-competent VP2 subunits to recruit VP1 into the nuclear capsid assembly pathway regardless of the BC composition. Instead, all four BC sequences, which are located in the interior of the capsid, were absolutely required by the incoming infectious MVM particle for the onset of infection, suggesting either an important conformational change or a disassembly of the coat for nuclear entry of a VP1-associated viral genome. Therefore, the evolutionarily conserved BC sequences and NLM domains provide complementary nuclear transport functions to distinct supramolecular complexes of capsid proteins during the autonomous parvovirus life cycle.  相似文献   

14.
A rabbit antiserum was prepared against the C-terminal peptide of 21 amino acids from the human heat shock protein hsp70. These antibodies were shown to be specific for this highly inducible heat shock protein (72 kilodaltons [kDa] in rat cells), and for a moderately inducible, constitutively expressed heat shock protein, hsc70 (74 kDa). In six independently derived rat cell lines transformed by a murine cDNA-genomic hybrid clone of p53 plus an activated Ha-ras gene, elevated levels of p53 were detected by immunoprecipitation by using murine-specific anti-p53 monoclonal antibodies. In all cases, the hsc70, but not the hsp70, protein was coimmunoprecipitated with the murine p53 protein. Similarly, antiserum to heat shock protein coimmunoprecipitated p53. Western blot (immunoblot) analysis demonstrated that the hsc70 and p53 proteins did not share detectable antigenic epitopes. The results provide clear immunological evidence for the specific association of a single heat shock protein, hsc70, with p53 in p53-plus-ras-transformed cell lines. A p53 cDNA clone, p11-4, failed to produce clonable cell lines from foci of primary rat cells transfected with p11-4 plus Ha-ras. A mutant p53 cDNA clone derived from p11-4, SVKH215, yielded a 2- to 35-fold increase in the number of foci produced after transfection of rat cells with SVKH215 plus Ha-ras. When cloned, 87.5% of these foci produced transformed cell lines. SVKH215 encodes a mutant p53 protein that binds preferentially to the heat shock proteins of 70 kDa compared with binding by the parental p11-4 p53 gene product. These data suggest that the p53-hsc70 protein complex could have functional significance in these transformed cells.  相似文献   

15.
The polyomavirus proteins VP1, VP2, and VP3 move from their cytoplasmic site of synthesis into the nucleus, where virus assembly occurs. To identify cellular or viral components which might control this process, we determined the distribution of VP1, VP2, and VP3 in a soluble fraction, a cytoplasmic cytoskeleton fraction, and a nuclear framework fraction of infected cells. All three proteins were detected in a detergent-extractable form immediately after their synthesis in polyomavirus-infected cells. Approximately 50, 25, and 40% of pulse-labeled VP1, VP2, and VP3, respectively, associated with the skeletal framework of the nucleus within 10 min after their synthesis. The remaining portion of each labeled protein failed to accumulate on the nuclear framework during a 40-min chase and was degraded. When expressed separately by recombinant vaccinia viruses, VP1 and VP2, but not VP3, accumulated on the nuclear framework. This association was not dependent on other polyomavirus proteins or viral DNA. The amount of total VP1 and VP2 which was bound to the nuclear framework approximated 45 and 20%, respectively. Indirect immunofluorescence demonstrated an exclusive nuclear localization of VP1 in situ. In coinfection experiments, a greater percentage of total VP2 and VP3 was bound to the nuclear framework of cells which cosynthesized VP1. These results indicate that although VP1 and VP2 can bind independently to the insoluble nuclear framework, the association of VP3 with this nuclear structure is promoted by the presence of VP1.  相似文献   

16.
Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70   总被引:5,自引:0,他引:5  
Heat shock proteins of the hsp/hsc70 family are essential chaperones, implicated in the stress response, aging, and a growing number of human diseases. At the molecular level, hsc70s are required for the proper folding and intracellular targeting of polypeptides as well as the regulation of apoptosis. Cytoplasmic members of the hsp/hsc70 family are believed to shuttle between nuclei and cytoplasm; they are found in both compartments of unstressed cells. Our experiments demonstrate that actin filament-destabilizing drugs trigger the nuclear accumulation of hsc70s in unstressed and heat-shocked cells recovering from stress. Using human-mouse heterokaryons, we show that stress inhibits shuttling and sequesters the chaperone in nuclei. The inhibition of hsc70 shuttling upon heat shock is only transient, and transport is reestablished when cells recover from stress. Hsc70 shuttling is controlled by hsc70 retention in the nucleus, a process that is mediated by two distinct mechanisms, ATP-sensitive binding of hsc70s to chaperone substrates and, furthermore, the association with nucleoli. The nucleolar protein fibrillarin and ribosomal protein rpS6 were identified as components that show an increased association with hsc70s in the nucleus upon stress exposure. Together, our data suggest that stress abolishes the exit of hsc70s from the nucleus to the cytoplasm, thereby limiting their function to the nuclear compartment. We propose that during recovery from stress hsc70s are released from nuclear and nucleolar anchors, which is a prerequisite to restore shuttling. nuclear transport; chaperone; nuclear retention; nucleoli  相似文献   

17.
Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus virion VP1 at 3 h after infection of mouse cells. In vitro, prokaryotic and eukaryotic Hsp70 chaperones efficiently disassembled polyoma- and papillomavirus-like particles and virions in energy-dependent reactions. These observations support a role for cell chaperones in the disassembly of these viruses.  相似文献   

18.
Interactions among the major and minor coat proteins of polyomavirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
Murine polyomavirus contains two related minor coat proteins, VP2 and VP3, in addition to the major coat protein, VP1. The sequence of VP3 is identical to that of the carboxy-terminal two-thirds of VP2. VP2 may serve a role in uncoating of the virus, and both minor coat proteins may be important for viral assembly. In this study, we show that VP3 and a series of deletion mutants of VP3 can be expressed in Escherichia coli as fusion proteins to glutathione S-transferase and partially solubilized with a mild detergent. Using an in vitro binding assay, we demonstrate that a 42-amino-acid fragment near the carboxy terminus of VP3 (residues 140 to 181) is sufficient for binding to purified VP1 pentamers. This binding interaction is rapid, saturable, and specific for the common carboxy terminus of VP2 and VP3. The VP1-VP3 complex can be coimmunoprecipitated with an antibody specific to VP1, and a purified VP3 fragment can selectively extract VP1 from a crude cell lysate. The stoichiometry of the binding reaction suggests that each VP1 pentamer in the virus binds either one VP2 or one VP3, with the VP1-VP2/3 complex stabilized by hydrophobic interactions. These results, taken together with studies from other laboratories on the expression of polyomavirus capsid proteins in mouse and insect cells (S. E. Delos, L. Montross, R. B. Moreland, and R. L. Garcea, Virology, 194:393-398, 1993; J. Forstova, N. Krauzewicz, S. Wallace, A. J. Street, S. M. Dilworth, S. Beard, and B. E. Griffin, J. Virol. 67:1405-1413, 1993), support the idea that a VP1-VP2/3 complex forms in the cytoplasm and, after translocation into the nucleus, acts as the unit for viral assembly.  相似文献   

19.
Adeno-associated virus capsids are composed of three proteins, VP1, VP2, and VP3. Although VP1 is necessary for viral infection, it is not essential for capsid formation. The other capsid proteins, VP2 and VP3, are sufficient for capsid formation, but the functional roles of each protein are still not well understood. By analyzing a series of deletion mutants of VP2, we identified a region necessary for nuclear transfer of VP2 and found that the efficiency of nuclear localization of the capsid proteins and the efficiency of virus-like particle (VLP) formation correlated well. To confirm the importance of the nuclear localization of the capsid proteins, we fused the nuclear localization signal of simian virus 40 large T antigen to VP3 protein. We show that this fusion protein could form VLP, indicating that the VP2-specific region located on the N-terminal side of the protein is not structurally required. This finding suggests that VP3 has sufficient information for VLP formation and that VP2 is necessary only for nuclear transfer of the capsid proteins.  相似文献   

20.
The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号