首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bahia Concepcion is a coastal lagoon that has bottom anoxic conditions and high pigment concentrations during the summer. The phytoplankton responsible for this pigment increase is enigmatic, therefore we sampled the lagoon to analyze the pigment with a C8-HPLC system to look for signatures of phytoplankton groups. Analysis reveals a low pigment concentration in the mixed layer with a higher concentration of zeaxanthin and increasing values of chlorophyll a, peridinin, and fucoxanthin below, which peaked at the depth where oxygen dramatically decreases and H(2)S increases. Below this depth, a high pigmentation was recorded and the most important signatures were six chlorophyll-like pigments that eluted between the fucoxanthin and the chlorophyll a, and one carotenoid that eluted just after the chlorophyll a. Spectral characteristics of these last pigments are very similar to pigments present in the Chlorobiales group. These results suggest that cyanobacteria, diatoms, and dinoflagellates are responsible for the chlorophyll a increases, though in highly pigmented samples, anoxygenic phototrophic bacteria are probably the main contributors to the increase in pigments.  相似文献   

2.
W K Li  P M Dickie 《Cytometry》2001,44(3):236-246
BACKGROUND: To establish the prevailing state of the ecosystem for the assessment of long-term change, the abundance of microbial plankton in Bedford Basin (Nova Scotia, Canada) is monitored weekly by flow cytometry. METHODS: Phytoplankton are detected by their chlorophyll autofluorescence. Those that contain phycoerythrin are designated as Synechococcus cyanobacteria or cryptophyte algae according to the intensity of light scatter. Bacteria and viruses are stained with DNA-binding fluorochromes and detected by green fluorescence. Distinction is made between bacterial and viral subpopulations exhibiting high and low fluorescence. RESULTS: Time series data are presented for weekly observations from 1991 to 2000. Weekly averages are computed for the complete annual cycle of temperature, salinity, river discharge, nitrate, phosphate, silicate, chlorophyll, total phytoplankton including Synechococcus and cryptophytes, total bacteria including high and low-fluorescence subpopulations, and total viruses including high and low-fluorescence subpopulations. CONCLUSIONS: The microbial biomass in the surface water of Bedford Basin is dominated by phytoplankton. The spring bloom of phytoplankton represents a maximum in algal biovolume, but not in cell number. Phytoplankton, bacteria, and viruses all attain their annual numerical maxima between the summer solstice and the autumn equinox. A vigorous microbial loop and viral shunt is envisioned to occur in the summer.  相似文献   

3.
A study of phytoplankton productivity and related parameters was carried out in two fringing and barrier reef systems around Moorea island (Tiahura lagoon) and Tahiti (Vairao lagoon), Society Islands, during July–August 1974.In Tiahura lagoon, which is the narrower and the shallower, phytoplankton standing crop and production are extremely low; photosynthetic assimilation, as measured in situ by the 14C method, ranges from 4 to 27 mg C m?2 day?1, presumably less than in the impoverished open ocean, but it is surprisingly high at a station just outside the barrier reef (645 mg C m?2 day?1) as the result of some island mass effect. As compared to the latter station, the lagoon shows a ten-times increase in particle content and glucose uptake, and a higher percentage of decomposition products of plant pigments. These data support the concept that, in such environments where benthic primary producers prevail, phytoplankton may have lost its ‘usual’ rôle in the aquatic food web.Vairao lagoon, a deeper and wider one, subjected to a greater extent to land fertilization, is more productive (103–420 mg C m?2 day?1). Considering this difference, as well as the considerable range of phytoplankton production in coral reef areas of the world, the need for a trophic classification of such ecosystems is emphasized.  相似文献   

4.
Concentrations of phytoplankton (coccoid cychobacteria and total chlorophyll) and planktonic microrial communities (heterotropic bacteria, nanoflagellates and ciliates) were lower over leeward reef flats than over open water or reef faces, around Davies Reef and Myrmidon Reef in the central Great Barrier Reef, Australia. Concentrations of cyanobacteria, which accounted for approximately 15–50% of the carbon biomass of phytoplankton in open water, decreased from the reef face towards the leeward reef flat. Concentrations of ciliates were consistently lower at the leeward reef flat than at the reef face. For Davies Reef, the retention rates of phytoplankton and planktonic microbial communities were estimated to reach 253 gC d-1 per 1 m strip of the reef or about 0.09 gC m-2 d-1. This value is virtually equal to estimates of net community production (0.1 gC m-2 d-1). This allocthonous organic subsidy may help maintain spositive carbon balance on both Davies and Myrmidon Reefs on the Great Barrier Reef.  相似文献   

5.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

6.
  1. Phosphorus (P) usually is the primary limiting nutrient of phytoplankton biomass, but attention towards nitrogen (N) and trace nutrients, such as iron (Fe), has surfaced. Additionally, N-fixing cyanobacterial blooms have been documented to occur in N-rich, P-poor waters, which is counterintuitive from the paradigm that low N and high P promotes blooms. For example, Lake Erie's central basin has Dolichospermum blooms when nitrate concentrations are high, which raises questions about which nutrient(s) are selecting for Dolichospermum over other phytoplankton and why an N-fixer is present in high N waters?
  2. We conducted a 4-year (2014–2017) study in Lake Erie's central basin to determine which nutrient (P, N, or trace nutrients such as Fe, molybdenum [Mo], and boron [B]) constrained chlorophyll concentration, phytoplankton biovolume, and nitrate assimilation using nutrient enrichment bioassays. The enriched lake water was incubated in 1-L bottles in a growth chamber programmed at light and temperatures of in situ conditions for 4–7 days. We also quantified heterocytes when N-fixing cyanobacteria were present.
  3. Compared to the non-enriched control, the P-enriched (+P) treatment had significantly higher chlorophyll and phytoplankton biovolume in c. 75% of experiments. Combination enrichments of P with ammonium-N, nitrate-N, Fe, Mo, and B were compared to the +P treatment to determine secondary limitations. +P and ammonium-N and +P nitrate-N resulted in higher chlorophyll in 50% of experiments but higher phytoplankton biovolume in only 25% of experiments. These results show that P was the primary limiting nutrient, but there were times when N was secondarily limiting.
  4. Chlorophyll concentration indicated N secondary limitation in half of the experiments, but biovolume indicated only N secondary limitation in 25% of the experiments. To make robust conclusions from nutrient enrichment bioassays, both chlorophyll and phytoplankton biovolume should be measured.
  5. The secondary effects of Fe, Mo, and B on chlorophyll were low (<26% of experiments), and no secondary effects were observed on phytoplankton biovolume and nitrate assimilation. However, +P and Fe resulted in more chlorophyll than +P in experiments conducted during Dolichospermum blooms, and +P and B significantly increased the number of heterocytes in Dolichospermum. These results indicate that low Fe availability might select for Dolichospermum, and low B constrains heterocyte formation in the central basin of Lake Erie. Furthermore, these results could apply to other lakes with high N and low P where diazotrophic cyanobacterial blooms occur.
  相似文献   

7.
武汉东湖浮游植物水华的多元分析   总被引:12,自引:4,他引:8  
应用多元分析中的fuzzy聚类分析、Fisher判别分析和逐步回归分析,对武汉东湖1983至1985年浮游植物水华进行一系列分析处理,得到其Ⅰ、Ⅱ两站的水华判别函数,分析了判断水华形成的主要指标:Ⅰ站为初级生产量和氨氮浓度,Ⅱ站为温度、硝酸盐浓度、叶绿素a浓度和COD,此外,本文还就Ⅰ、Ⅱ两站浮游植物的两个因子(chl a和初级生产量)分别对不同形态的营养元(氨氮、亚硝酸盐、硝酸盐、总氮、磷酸盐、总磷和硅酸盐)进行了回归分析;结果指出,现在东湖浮游植物不是以磷为限制因子而是氮限制。    相似文献   

8.
The short-term temporal dynamics of phytoplankton composition was compared among coral reef waters, the adjacent ocean and polluted harbour water from July until October along the south-western coast of Curaçao, southern Caribbean. Temporal variations in phytoplankton pigment 'fingerprints' (zeaxanthin, chlorophyll b, 19'-hexanoyloxyfucoxanthin, fucoxanthin, 19'-butanoyloxyfucoxanthin, chlorophyll c2 and c3 relative to chlorophyll a) in the ocean were also observed in waters overlying the reef. However, with respect to specific pigments and algal-size distribution, the algal composition in reef waters was usually slightly different from that in the oceanic water. Phytoplankton biomass (chlorophyll a) was either higher or lower than in the oceanic water. The relative amount of fucoxanthin and peridinin was usually higher, and the relative and absolute amount of zeaxanthin was significantly lower than in oceanic water. Zeaxanthin-containing Synechococci were significantly reduced in reef water. Average algal cell size increased from the open water to the reef and the harbour entrance. Large centric diatoms (>20 m Ø) were better represented in reef than in oceanic water. In reef-overlying waters, the nitrate and nitrite concentrations were higher than in oceanic water. In front of the town, anthropogenic eutrophication (sewage discharge and ground water seepage) resulted in higher NH4, NO3 and PO4 concentrations than at other reef stations. This concurred with significantly enhanced phytoplankton biomass (chlorophyll a), chlorophyll c2 and peridinin amounts at Town Reef compared with the other reef stations. Polluted harbour water usually showed the highest phytoplankton biomass of all stations, dominated by diatoms and dinoflagellates. Conditions in reef waters and harbour water promoted the occurrence and the relative abundance of diatoms and dinoflagellates. Harbour water did not influence the phytoplankton composition and biomass at reef stations situated >5 km away from the harbour entrance. We conclude that phytoplankton undergoes a shift in algal composition during transit over the reef. The dominant processes appear to be selective removal of zeaxanthin-containing Synechococcus (by the reef benthos) and (relative) increase in diatoms and dinoflagellates. The difference in the phytoplankton composition between reef and oceanic waters tends to increase with decreasing dilution of reef water with ocean water.  相似文献   

9.
We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Nelson CE  Carlson CA 《PloS one》2011,6(3):e18320
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.  相似文献   

11.
The Mar Menor is a sheltered and hypersaline lagoon, with salinity ranges between 38 and 51 psu. The lagoon is threatened by several pressures and in the last decades detrimental impact on the natural community structure and dynamics have increased. In the watershed, agricultural practices are rapidly evolving from extensive dry crop farming to intensively irrigated crops, with increasing loads of nutrient and pollutants to the lagoon. Hydrological conditions, nutrients and chlorophyll a concentrations were analysed in 1997 and 2002–2003 in a grid of 20 stations in the lagoon. Different time scales, from daily to inter-annual, were considered. In the considered periods, the dissolved inorganic nitrogen (DIN) increased whilst phosphate decreased significantly. These contrasting patterns depended upon the increased agricultural loading for DIN and were due to the implementation of the wastewater works for phosphates. In 1997 and 2002, the highest nitrate concentrations were usually found on the west coast of the lagoon, close to the mouths of the main watercourses. In parallel, the lowest concentrations were detected at the inner coastline along “La Manga” sandy bar and “El Estacio” channel. Based on weekly data, correlations between chlorophyll a concentrations and environmental variables disagreed with traditional eutrophication models. Relationships between chlorophyll a and nutrients were negative, suggesting that in the short term phytoplankton controlled nutrient concentrations. Moreover, nitrate and phosphorous seemed to alternate as limiting factors. The relationships between chlorophyll a became positive when considering time lags and analysed at longer time scales (monthly or seasonal means), thus suggesting a very rapid response of primary producers to nutrient enrichment. A significant correlation between chlorophyll a concentration and fish larvae density was also found at all time scales analysed, suggesting a top-down control of the trophic web.  相似文献   

12.
Tellina tennis Da Costa was kept for four months in four large outdoor tanks containing sand and sea water. There was a 10 % daily exchange of sea water, pumped directly from the sea. Three tanks received daily addition of nutrients in the form of sodium nitrate and sodium dihydrogen phosphate, giving enrichment of approximately 3, 10, and 30 times natural sea-water levels of nitrate in the different tanks. Phosphate, nitrate, chlorophyll, and organic carbon in the water were measured regularly, the nitrate by Autoanalyser. Water temperature and solar radiation were recorded. Zooplankton samples were taken daily and Tellina were sampled monthly for length, weight, and biochemical analysis of tissues.Phosphate was always present in excess. The lowest level of nitrogen enrichment resulted in almost complete utilisation of nitrate, with a significant increase of organic carbon and chlorophyll above control levels. Zooplankton occurred in the greatest numbers in this tank, and Tellina showed the best survival, growth, and condition. In the tanks with the higher levels of enrichment, excess nutrients led to growth of macrophytic algae on the surface and sides of tank. This had an adverse effect on the phytoplankton production: zooplankton numbers were lower, as was growth of Tellina.  相似文献   

13.
This paper documents the facies change in response to the Holocene transgression within five sediment cores taken in the lagoon of Mayotte, which contain a Type-1 depositional sequence (lowstand, transgressive and highstand deposits underlain by an erosive sequence boundary). Quantitative compositional analysis and visual examination of the bioclasts were used to document the facies changes. The distribution of the skeletal and non-skeletal grains in the lagoon of Mayotte is clearly controlled by (1) the rate and amplitude of the Holocene sea-level rise, (2) the pre-Holocene basement topography and (3) the growth-potential of the barrier reef during sea-level rise, and the changes in bathymetry and continuity during this period. The sequence boundary consists of the glacial karst surface. The change-over from the glacial lowstand is marked by the occurrence of mangrove deposits. Terrigenous and/or mixed terrigenous-carbonate muds to sandy muds with a mollusc or mollusc-ostracod assemblage dominate the transgressive deposits. Mixed carbonate-siliciclastic or carbonate sand to gravel with a mollusc-foraminifer or mollusc-coral-foraminifer assemblage characterize the early highstand deposits on the inner lagoonal plains. The early highstand deposits in the outer lagoonal plains consist of carbonate muds with a mollusc-foraminifer assemblage. Late highstand deposits consist of terrigenous muds in the nearshore bays, mixed terrigenous-carbonate sandy muds to sands with a mollusc-foraminifer assemblage on the inner lagoonal plains and mixed muds with a mollusc-foraminifer assemblage on the outer deep lagoonal plains. The present development stage of the individual lagoons comprises semi-enclosed to open lagoons with fair or good water exchange with the open ocean.  相似文献   

14.
In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.  相似文献   

15.
Ault  Timothy  Velzeboer  Renate  Zammit  Rebecca 《Hydrobiologia》2000,429(1-3):89-103
We investigated the influence of nutrient availability, specifically nitrogen, phosphorus and silicon on growth and community structure of phytoplankton from the Port Adelaide River estuary, South Australia. Two bioassay experiments were conducted. The first, Nutrich1, involved addition of nutrients in vitro to samples of the natural phytoplankton community from a single location in the upper estuary. The second, Nutrich2, involved nutrient addition and incubation of water from five locations in the estuary following inoculation with a `standardised' phytoplankton assemblage derived from laboratory cultures. In Nutrich1, enrichment with silicon led to greatly enhanced phytoplankton biomass due to increased growth of diatoms. Addition of nitrogen or phosphorus had little effect on phytoplankton growth. In Nutrich2, addition of nitrogen resulted in enhanced growth of phytoplankton in water collected from near the mouth the estuary, but there were no differences in growth among nutrient treatments for the remaining locations. Comparison of phytoplankton growth rate among locations revealed a trend of decreasing growth in moving towards the mouth of the estuary. This trend was unaffected by enrichment with nitrate, phosphate or silicate. We suggest that spatial variation in growth potential within the Port Adelaide River estuary may relate to variation in the concentration of nitrogen as ammonium.  相似文献   

16.
Lough Neagh is the largest lake in the UK and has been extensively monitored since 1974. It has suffered from considerable eutrophication and toxic algal blooms. The lake continues to endure many of the symptoms of nutrient enrichment despite improvements in nutrient management throughout the catchment, in particular a permanently dominant crop of the cyanobacterium Planktothrix agardhii. This study examines the historical changes in the Lough, and uses the PROTECH lake model to predict how the phytoplankton community may adapt in response to potential future changes in air temperature and nutrient load. PROTECH was calibrated against 2008 observations, with a restriction on the maximum simulated mixed depth to reflect the shallow nature of the lake and the addition of sediment released phosphorus throughout the mixed water column between 1 May and 1 October (with an equivalent in-lake concentration of 2.0 mg m−3). The historical analysis showed that phytoplankton biomass (total chlorophyll a) experienced a steady decline since the mid-1990s. During the same period the key nutrients for phytoplankton growth in the lake have shown contrasting trends, with increases in phosphorus concentrations and declines in nitrate concentrations. The modelled future scenarios which simulated a temperature increase of up to 3 °C showed a continuation of those trends, i.e. total chlorophyll a and nitrate concentrations declined in the surface water, while phosphorus concentrations increased and P. agardhii dominated. However, scenarios which simulated a 4 °C increase in air temperature showed a switch in dominance to the cyanobacteria, Dolichospermum spp. (formerly Anabaena spp.). This change was caused by a temperature related increase in growth driving nutrient consumption to a point where nitrate was limiting, allowing the nitrogen-fixing Dolichospermum spp. to gain sufficient advantage. These results suggest that in the long term, one nuisance cyanobacteria bloom may only be replaced by another unless the in-lake phosphorus concentration can be greatly reduced.  相似文献   

17.
At two stations in a Norwegian land-locked fjord, one more and one less influenced by freshwater run-off, studies were made of the primary production, chlorophyll a concentrations, and the quantity and composition of phytoplankton. Samples were taken for analyses of phosphate, nitrate, and silicate, and temperature and salinity were measured. Two kinds of bio-assays were performed: combinations of phosphate, nitrate, and silicate were added to I, natural water incubated in situ, and II, natural water incubated in the laboratory. Lower salinities and higher concentrations of all nutrients were found at the station most influenced by fresh-water. Although the bio-assays indicated that nitrogen was the main limiting nutrient, the biological parameters showed no consistent differences between the two stations. The similarity is tentatively explained by the growth of nanoplankton algae, partly depending on nutrients other than those analysed.  相似文献   

18.
We combined a mass balance approach with measurements of air–water and sediment–water nitrogen (N) exchange to better understand the mechanisms attenuating N throughputs in a eutrophic coastal lagoon. We were particularly interested in how seasonal shifts in external versus internal N fluxes and the transition from diatom- to cyanobacteria- dominated phytoplankton communities influence N storage and loss to the atmosphere. We found that on an annual basis almost all of the N removed by the lagoon was due to sediment storage following the spring diatom bloom. This period was characterized by high riverine inputs of dissolved inorganic nitrogen, high rates of assimilatory conversion to particulate nitrogen (PN), and net accrual of N in sediments. By contrast, the larger summer bloom was associated with low sediment N storage, which we attribute in part to the presence of positively-buoyant cyanobacteria. Low settling rates during cyanobacteria blooms favored export of PN to the Baltic Sea over sediment accrual in the lagoon. In addition, summer dinitrogen (N2) fixation by cyanobacteria largely offset annual N2 losses via denitrification. These findings show that cyanobacteria blooms diminish N attenuation within the lagoon by altering the balance of N exchange with the atmosphere and by promoting export of particulate N over sediment burial.  相似文献   

19.
This study described the nutrient dynamics in a tropical coastal lagoon that is affected by the infiltration of cold nutrient-rich groundwater. The spatial and time variation of physicochemical characteristics (e.g., temperature, salinity, oxygen) and nutrients (e.g., nitrate, ammonium, soluble reactive silicate, soluble reactive phosphorus) are depicted and show changes with respect to weather conditions. The lagoon shows a permanent salinity gradient from the inner zone (14–19). Nitrate and soluble reactive silicate (SRSi) are inversely correlated with salinity. Soluble phosphorus (SRP) shows highest levels in the inner zone during winter months (>9 µM). Ammonium shows two high peaks, one in the rainy season (15 µM) and the other during winter (11 µM). The intensity and quality of rainfall influences the nitrate and SRSi inputs, while biological activity influences the SRP and ammonium levels.  相似文献   

20.
Henderson Island, in the Pitcairn Group, preserves a Pleistocene atoll physiography with the rim of the raised reef structure, supporting spur and groove topography, enclosing a central lagoon. Excellent preservation of coral reef communities occurs along the ancient atoll rim and within the central lagoon. The previously interpreted depositional nature of the fossil atoll structure is herein corroborated with geomorphologic and stratigraphic evidence from previously un-visited portions of the island. Stratigraphic and lateral facies relationships indicate a physiographic zonation which includes spur and grooves, outer reef flat, lagoon margin, and an interior lagoon with patch reefs. The in situ occurrence and zonation of reef coral communities around the periphery and within the interior of the island appear to reflect the original physiography of the atoll lagoon, with the most pronounced reef development on the SE side of the original atoll. Stratigraphic units which comprise the raised atoll lagoon structure represent different time intervals, so the atoll lagoon structure formed during various sea level fluctuations. The modern atolls of the Pitcairn Group, Oeno and Ducie, provide some comparisons (similarities and differences) with the fossil lagoon on top of Henderson Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号