首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the facultative autotrophic organism Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium, the Calvin cycle does not appear to be operative in autotrophic carbon assimilation. An alternative cyclic pathway, the 3-hydroxypropionate cycle, has been proposed. In this pathway, acetyl coenzyme A (acetyl-CoA) is assumed to be converted to malate, and two CO(2) molecules are thereby fixed. Malyl-CoA is supposed to be cleaved to acetyl-CoA, the starting molecule, and glyoxylate, the carbon fixation product. Malyl-CoA cleavage is shown here to be catalyzed by malyl-CoA lyase; this enzyme activity is induced severalfold in autotrophically grown cells. Malate is converted to malyl-CoA via an inducible CoA transferase with succinyl-CoA as a CoA donor. Some enzyme activities involved in the conversion of malonyl-CoA via 3-hydroxypropionate to propionyl-CoA are also induced under autotrophic growth conditions. So far, no clue as to the first step in glyoxylate assimilation has been obtained. One possibility for the assimilation of glyoxylate involves the conversion of glyoxylate to glycine and the subsequent assimilation of glycine. However, such a pathway does not occur, as shown by labeling of whole cells with [1,2-(13)C(2)]glycine. Glycine carbon was incorporated only into glycine, serine, and compounds that contained C(1) units derived therefrom and not into other cell compounds.  相似文献   

2.
The 3-hydroxypropionate cycle is a bicyclic autotrophic CO(2) fixation pathway in the phototrophic Chloroflexus aurantiacus (Bacteria), and a similar pathway is operating in autotrophic members of the Sulfolobaceae (Archaea). The proposed pathway involves in a first cycle the conversion of acetyl-coenzyme A (acetyl-CoA) and two bicarbonates to L-malyl-CoA via 3-hydroxypropionate and propionyl-CoA; L-malyl-CoA is cleaved by L-malyl-CoA lyase into acetyl-CoA and glyoxylate. In a second cycle, glyoxylate and another molecule of propionyl-CoA (derived from acetyl-CoA and bicarbonate) are condensed by a putative beta-methylmalyl-CoA lyase to beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. The putative L-malyl-CoA lyase gene of C. aurantiacus was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Beta-methylmalyl-CoA lyase was purified from cell extracts of C. aurantiacus and characterized. We show that these two enzymes are identical and that both enzymatic reactions are catalyzed by one single bifunctional enzyme, L-malyl-CoA lyase/beta-methylmalyl-CoA lyase. Interestingly, this enzyme works with two different substrates in two different directions: in the first cycle of CO(2) fixation, it cleaves L-malyl-CoA into acetyl-CoA and glyoxylate (lyase reaction), and in the second cycle it condenses glyoxylate with propionyl-CoA to beta-methylmalyl-CoA (condensation reaction). The combination of forward and reverse directions of a reversible enzymatic reaction, using two different substrates, is rather uncommon and reduces the number of enzymes required in the pathway. In summary, L-malyl-CoA lyase/beta-methylmalyl-CoA lyase catalyzes the interconversion of L-malyl-CoA plus propionyl-CoA to beta-methylmalyl-CoA plus acetyl-CoA.  相似文献   

3.
The mechanism of acetate assimilation by the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate shortcut, has been studied. In a previous work, proceeding from data on acetate assimilation by Rba. sphaeroides cell suspensions, a suggestion was made regarding the operation, in this bacterium, of the citramalate cycle. This cycle was earlier found in Rhodospirillum rubrum in the form of an anaplerotic reaction sequence that operates during growth on acetate instead of the glyoxylate shortcut, which is not present in the latter bacterium. The present work considers the enzymes responsible for acetate assimilation in Rba. sphaeroides. It is shown that this bacterium possesses the key enzymes of the citramalate cycle: citramalate synthase, which catalyzes condensation of acetyl-CoA and pyruvate and, as a result, forms citramalate, and 3-methylmalyl-CoA lyase, which catalyzes the cleavage of 3-methylmalyl-CoA to glyoxylate and propionyl-CoA. The regeneration of pyruvate, which is the acetyl-CoA acceptor in the citramalate cycle, involves propionyl-CoA and occurs via the following reaction sequence: propionyl-CoA (+ CO2) --> methylmalonyl-CoA --> succinyl-CoA --> succinate --> fumarate --> malate --> oxalacetate (- CO2) --> phosphoenolpyruvate --> pyruvate. The independence of the cell growth and the acetate assimilation of CO2 is due to the accumulation of CO2/HCO3- (released during acetate assimilation) in cells to a level sufficient for the effective operation of propionyl-CoA carboxylase.  相似文献   

4.
The autotrophic CO(2) fixation pathway (3-hydroxypropionate cycle) in Chloroflexus aurantiacus results in the fixation of two molecules of bicarbonate into one molecule of glyoxylate. Glyoxylate conversion to the CO(2) acceptor molecule acetyl-coenzyme A (CoA) requires condensation with propionyl-CoA (derived from one molecule of acetyl-CoA and one molecule of CO(2)) to beta-methylmalyl-CoA, which is converted to citramalyl-CoA. Extracts of autotrophically grown cells contained both S- and R-citramalyl-CoA lyase activities, which formed acetyl-CoA and pyruvate. Pyruvate is taken out of the cycle and used for cellular carbon biosynthesis. Both the S- and R-citramalyl-CoA lyases were up-regulated severalfold during autotrophic growth. S-Citramalyl-CoA lyase activity was found to be due to l-malyl-CoA lyase/beta-methylmalyl-CoA lyase. This promiscuous enzyme is involved in the CO(2) fixation pathway, forms acetyl-CoA and glyoxylate from l-malyl-CoA, and condenses glyoxylate with propionyl-CoA to beta-methylmalyl-CoA. R-Citramalyl-CoA lyase was further studied. Its putative gene was expressed and the recombinant protein was purified. This new enzyme belongs to the 3-hydroxy-3-methylglutaryl-CoA lyase family and is a homodimer with 34-kDa subunits that was 10-fold stimulated by adding Mg(2) or Mn(2+) ions and dithioerythritol. The up-regulation under autotrophic conditions suggests that the enzyme functions in the ultimate step of the acetyl-CoA regeneration route in C. aurantiacus. Genes similar to those involved in CO(2) fixation in C. aurantiacus, including an R-citramalyl-CoA lyase gene, were found in Roseiflexus sp., suggesting the operation of the 3-hydroxypropionate cycle in this bacterium. Incomplete sets of genes were found in aerobic phototrophic bacteria and in the gamma-proteobacterium Congregibacter litoralis. This may indicate that part of the reactions may be involved in a different metabolic process.  相似文献   

5.
The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to beta-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA --> d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route.  相似文献   

6.
The mechanism of acetate assimilation by the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate shunt, has been studied. In a previous work, proceeding from data on acetate assimilation by Rba. sphaeroides cell suspensions, a suggestion was made regarding the operation, in this bacterium, of the citramalate cycle. This cycle was earlier found in Rhodospirillum rubrum in the form of an anaplerotic reaction sequence that operates during growth on acetate instead of the glyoxylate shunt, which is not present in the latter bacterium. The present work considers the enzymes responsible for acetate assimilation in Rba. sphaeroides. It is shown that this bacterium possesses the key enzymes of the citramalate cycle: citramalate synthase, which catalyzes condensation of acetyl-CoA and pyruvate and, as a result, forms citramalate, and 3-methylmalyl-CoA lyase, which catalyzes the cleavage of 3-methylmalyl-CoA to glyoxylate and propionyl-CoA. The regeneration of pyruvate, which is the acetyl-CoA acceptor in the citramalate cycle, involves propionyl- CoA and occurs via the following reaction sequence: propionyl-CoA (+CO2) å methylmalonyl-CoA å succinyl-CoA å succinate å fumarate malate å oxaloacetate (−CO2) å phosphoenolpyruvate å pyruvate. The independence of the cell growth and the acetate assimilation of CO2 is due to the accumulation of CO2/HCO 3 (released during acetate assimilation) in cells to a level sufficient for the effective operation of propionyl-CoA carboxylase.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 319–328.Original Russian Text Copyright © 2005 by Filatova, Berg, Krasil’nikova, Ivanovsky.  相似文献   

7.
The unresolved autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus have been investigated. Autotrophically growing cultures were labelled with [1,4-13C1]succinate, and the 13C pattern in cell constituents was determined by 1H- and 13C-NMR spectroscopy of purified amino acids and other cell constituents. In both organisms succinate contributed to less than 10% of cell carbon, the major part of carbon originated from CO2. All cell constituents became 13C-labelled, but different patterns were observed in the two organisms. This proves that two different cyclic CO2 fixation pathways are operating in autotrophic carbon assimilation in both of which succinate is an intermediate. The 13C-labelling pattern in T. neutrophilus is consistent with the operation of a reductive citric acid cycle and rules out any other known autotrophic CO2 fixation pathway. Surprisingly, the proffered [1,4-13C1]succinate was partially converted to double-labelled [3,4-13C2]glutamate, but not to double-labelled aspartate. These findings suggest that the conversion of citrate to 2-oxoglutarate is readily reversible under the growth conditions used, and a reversible citrate cleavage reaction is proposed. The 13C-labelling pattern in C. aurantiacus disagrees with any of the established CO2 fixation pathways; it therefore demands a novel autotrophic CO2 fixation cycle in which 3-hydroxypropionate and succinate are likely intermediates. The bacterium excreted substantial amounts of 3-hydroxypropionate (5 mM) and succinate (0.5 mM) at the end of autotrophic growth. Autotrophically grown Chloroflexus cells contained acetyl-CoA carboxylase and propionyl-CoA carboxylase activity. These enzymes are proposed to be the main CO2-fixing enzymes resulting in malonyl-CoA and methylmalonyl-CoA formation; from these carboxylation products 3-hydroxypropionate and succinate, respectively, can be formed.  相似文献   

8.
Rhodospirillum rubrum is among the bacteria that can assimilate acetate in the absence of isocitrate lyase, the key enzyme of glyoxylate shunt. Previously we have suggested the functioning of a new anaplerotic cycle of acetate assimilation in this bacterium: citramalate cycle, where acetyl-CoA is oxidized to glyoxylate. This work has demonstrated the presence of all the key enzymes of this cycle in R. rubrum extracts: citramalate synthase catalyzing condensation of acetyl-CoA and pyruvate with the formation of citramalate, mesaconase forming mesaconate from L-citramalate, and the enzymes catalyzing transformation of propionyl-CoA + glyoxylate 3-methylmalyl-CoA ? mesaconyl-CoA. At the same time, R. rubrum synthesizes crotonyl-CoA carboxylase/reductase, which is the key enzyme of ethylmalonyl-CoA pathway discovered recently in Rhodobacter sphaeroides. Physiological differences between the citramalate cycle and the ethylmalonyl-CoA pathway are discussed.  相似文献   

9.
The mechanism of the dark assimilation of acetate in the photoheterotrophically grown nonsulfur bacterium Rhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation in Rsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle in Rsp. rubrum cells grown aerobically in the dark can function as an anaplerotic pathway. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicative that citramalate and mesaconate are intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts of Rsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function in Rsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

10.
The thermophilic homoacetogenic bacterium Moorella sp. strain HUC22-1 ferments glyoxylate to acetate roughly according to the reaction 2 glyoxylate --> acetate + 2 CO(2). A batch culture with glyoxylate and yeast extract yielded 11.7 g per mol of cells per substrate, which was much higher than that obtained with H(2) plus CO(2). Crude extracts of glyoxylate-grown cells catalyzed the ADP- and NADP-dependent condensation of glyoxylate and acetyl coenzyme A (acetyl-CoA) to pyruvate and CO(2) and converted pyruvate to acetyl-CoA and CO(2), which are the key reactions of the malyl-CoA pathway. ATP generation was also detected during the key enzyme reactions of this pathway. Furthermore, this bacterium consumed l-malate, an intermediate in the malyl-CoA pathway, and produced acetate. These findings suggest that Moorella sp. strain HUC22-1 can generate ATP by substrate-level phosphorylation during glyoxylate catabolism through the malyl-CoA pathway.  相似文献   

11.
The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by L-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:L-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for L-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:L-malate CoA transferase forms a large (alphabeta)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + L-malate --> succinate + L-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts L-citramalate instead of L-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle.  相似文献   

12.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

13.
Organisms, which grow on organic substrates that are metabolized via acetyl-CoA, are faced with the problem to form all cell constituents from this C(2)-unit. The problem was solved by the seminal work of Kornberg and is known as the glyoxylate cycle. However, many bacteria are known to not contain isocitrate lyase, the key enzyme of this pathway. This problem was addressed in acetate-grown Rhodobacter sphaeroides. An acetate-minus mutant identified by transposon mutagenesis was affected in the gene for beta-ketothiolase forming acetoacetyl-CoA from two molecules of acetyl-CoA. This enzyme activity was missing in this mutant, which grew on acetoacetate and on acetate plus glyoxylate. A second acetate/acetoacetate-minus mutant was affected in the gene for a putative mesaconyl-CoA hydratase, an enzyme which catalyses the hydration of mesaconyl-CoA to beta-methylmalyl-CoA. Beta-methylmalyl-CoA is further cleaved into glyoxylate and propionyl-CoA. These results as well as identification of acetate-upregulated proteins by two-dimensional gel electrophoresis lead to the proposal of a new pathway for acetate assimilation. In a first part, affected by the mutations, two molecules of acetyl-CoA and one molecule CO(2) are converted via acetoacetyl-CoA and mesaconyl-CoA to glyoxylate and propionyl-CoA. In a second part glyoxylate and propionyl-CoA are converted with another molecule of acetyl-CoA and CO(2) to l-malyl-CoA and succinyl-CoA.  相似文献   

14.
3-Hydroxypropionate is a product or intermediate of the carbon metabolism of organisms from all three domains of life. However, little is known about how carbon derived from 3-hydroxypropionate is assimilated by organisms that can utilize this C(3) compound as a carbon source. This work uses the model bacterium Rhodobacter sphaeroides to begin to elucidate how 3-hydroxypropionate can be incorporated into cell constituents. To this end, a quantitative assay for 3-hydroxypropionate was developed by using recombinant propionyl coenzyme A (propionyl-CoA) synthase from Chloroflexus aurantiacus. Using this assay, we demonstrate that R. sphaeroides can utilize 3-hydroxypropionate as the sole carbon source and energy source. We establish that acetyl-CoA is not the exclusive entry point for 3-hydroxypropionate into the central carbon metabolism and that the reductive conversion of 3-hydroxypropionate to propionyl-CoA is a necessary route for the assimilation of this molecule by R. sphaeroides. Our conclusion is based on the following findings: (i) crotonyl-CoA carboxylase/reductase, a key enzyme of the ethylmalonyl-CoA pathway for acetyl-CoA assimilation, was not essential for growth with 3-hydroxypropionate, as demonstrated by mutant analyses and enzyme activity measurements; (ii) the reductive conversion of 3-hydroxypropionate or acrylate to propionyl-CoA was detected in cell extracts of R. sphaeroides grown with 3-hydroxypropionate, and both activities were upregulated compared to the activities of succinate-grown cells; and (iii) the inactivation of acuI, encoding a candidate acrylyl-CoA reductase, resulted in a 3-hydroxypropionate-negative growth phenotype.  相似文献   

15.
Autotrophic Archaea of the family Sulfolobaceae (Crenarchaeota) use a modified 3-hydroxypropionate cycle for carbon dioxide assimilation. In this cycle the ATP-dependent carboxylations of acetyl-CoA and propionyl-CoA to malonyl-CoA and methylmalonyl-CoA, respectively, represent the key CO2 fixation reactions. These reactions were studied in the thermophilic and acidophilic Metallosphaera sedula and are shown to be catalyzed by one single large enzyme, which acts equally well on acetyl-CoA and propionyl-CoA. The carboxylase was purified and characterized and the genes were cloned and sequenced. In contrast to the carboxylase of most other organisms, acetyl-CoA/propionyl-CoA carboxylase from M. sedula is active at 75 degrees C and is isolated as a stabile functional protein complex of 560 +/- 50 kDa. The enzyme consists of two large subunits of 57 kDa each representing biotin carboxylase (alpha) and carboxytransferase (gamma), respectively, and a small 18.6 kDa biotin carrier protein (beta). These subunits probably form an (alpha beta gamma)4 holoenzyme. It has a catalytic number of 28 s-1 at 65 degrees C and at the optimal pH of 7.5. The apparent Km values were 0.06 mm for acetyl-CoA, 0.07 mm for propionyl-CoA, 0.04 mm for ATP and 0.3 mm for bicarbonate. Acetyl-CoA/propionyl-CoA carboxylase is considered the main CO2 fixation enzyme of autotrophic members of Sulfolobaceae and the sequenced genomes of these Archaea contain the respective genes. Due to its stability the archaeal carboxylase may prove an ideal subject for further structural studies.  相似文献   

16.
The mechanism of acetate assimilation in the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate pathway, is studied. It is found that the growth of this bacterium in batch and continuous cultures and the assimilation of acetate in cell suspensions are not stimulated by bicarbonate. The consumption of acetate is accompanied by the excretion of glyoxylate and pyruvate into the medium, stimulated by glyoxylate and pyruvate, and inhibited by citramalate. The respiration of cells in the presence of acetate is stimulated by glyoxylate, pyruvate, citramalate, and mesaconate. These data suggest that the citramalate cycle may function in Rba. sphaeroides in the form of an anaplerotic pathway instead of the glyoxylate pathway. At the same time, the low ratio of fixation rates for bicarbonate and acetate exhibited by the Rba. sphaeroides cells (approximately 0.1), as well as the absence of the stimulatory effect of acetate on the fixation of bicarbonate in the presence of the Calvin cycle inhibitor iodoacetate, suggests that pyruvate synthase is not involved in acetate assimilation in the bacterium Rba. sphaeroides.  相似文献   

17.
The 3-hydroxypropionate cycle has been proposed as a new autotrophic CO(2) fixation pathway for the phototrophic green non-sulfur eubacterium Chloroflexus aurantiacus and for some chemotrophic archaebacteria. The cycle requires the reductive conversion of the characteristic intermediate 3-hydroxypropionate to propionyl-CoA. The specific activity of the 3-hydroxypropionate-, CoA-, K(+)-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.09 micromol min(-1) mg(-1) protein, which was 2-fold down-regulated in heterotrophically grown cells. Unexpectedly, a single enzyme catalyzes the entire reaction sequence: 3-hydroxypropionate + MgATP + CoA + NADPH + H(+) --> propionyl-CoA + MgAMP + PP(i) + NADP(+) + H(2)O. The enzyme was purified 30-fold to near homogeneity and has a very large native molecular mass between 500 and 800 kDa, with subunits of about 185 kDa as judged by SDS-PAGE, suggesting a homotrimeric or homotetrameric structure. Upon incubation of this new enzyme, termed propionyl-CoA synthase, with the proteinase trypsin, the NADPH oxidation function of the enzyme was lost, whereas the enzyme still activated 3-hydroxypropionate to its CoA-thioester and dehydrated it to acrylyl-CoA. SDS-PAGE revealed that the subunits of propionyl-CoA synthase had been cleaved once and the N-terminal amino acid sequences of the two trypsin digestion products were determined. Two parts of the gene encoding propionyl-CoA synthase (pcs) were identified on two contigs of an incomplete genome data base of C. aurantiacus, and the sequence of the pcs gene was completed. Propionyl-CoA synthase is a natural fusion protein of 201 kDa consisting of a CoA ligase, an enoyl-CoA hydratase, and an enoyl-CoA reductase, the reductase domain containing the trypsin cleavage site. Similar polyfunctional large enzymes are common in secondary metabolism (e.g. polyketide synthases) but rare in primary metabolism (e.g. eukaryotic type I fatty acid synthase). These results lend strong support to the operation of the proposed pathway in autotrophic CO(2) fixation.  相似文献   

18.
In Pseudomonas AM1, conversion of 3-hydroxybutyrate to acetyl-CoA is mediated by an inducible 3-hydroxybutyrate dehydrogenase, an acetoacetate: succinate coenzyme A transferase (specific for succinyl-CoA) and an inducible beta-ketothiolase. Ethanol is oxidized to acetate by the same enzymes as are involved in methanol oxidation to formate. An inducible acetyl-CoA synthetase has been partially purified and characterized; it is essential for growth only on ethanol, malonate and acetate plus glyoxylate, as shown by the growth characteristics of a mutant (ICT54) lacking this enzyme. Free acetate is not involved in the assimilation of acetyl-CoA, and hydroxypyruvate reductase is not involved in the oxidation of acetyl-CoA to glyoxylate during growth on 3-hydroxybutyrate. A mutant (ICT51), lacking 'malate synthase' activity has been isolated and its characteristics indicate that this activity is normally essential for growth, of Pseudomonas AM1 on ethanol, malonate and 3-hydroxybutyrate, but not for growth on other substrates such as pyruvate, succinate and C1 compounds. The growth properties of a revertant (ICT51R) and of a mutant lacking malyl-CoA lyase (PCT57) indicate that an alternative route must exist for assimilation of compounds metabolized exclusively by way of acetyl-CoA.  相似文献   

19.
The mechanism of acetate assimilation in the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate shunt, has been studied. It has been found that the growth of this bacterium in batch and continuous cultures and the assimilation of acetate in cell suspensions are not stimulated by bicarbonate. The consumption of acetate is accompanied by the excretion of glyoxylate and pyruvate into the medium, stimulated by glyoxylate and pyruvate, and inhibited by citramalate. The respiration of cells in the presence of acetate is stimulated by glyoxylate, pyruvate, citramalate, and mesaconate. These data suggest that the citramalate cycle may function in Rba. sphaeroides in the form of an anaplerotic pathway instead of the glyoxylate shunt. At the same time, the low ratio of fixation rates for bicarbonate and acetate exhibited by the Rba. sphaeroides cells (approximately 0.1), as well as the absence of the stimulatory effect of acetate on the fixation of bicarbonate in the presence of the Calvin cycle inhibitor iodoacetate, suggests that pyruvate synthase is not involved in acetate assimilation in the bacterium Rba. sphaeroides.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 313–318.Original Russian Text Copyright © 2005 by Filatova, Berg, Krasil’nikova, Tsygankov, Laurinavichene, Ivanovsky.  相似文献   

20.
Anaplerosis from propionate was investigated in rat hearts perfused with 0-2mM [(13)C(3)]propionate and physiological concentrations of glucose, lactate, and pyruvate. The data show that when the concentration of [(13)C(3)]propionate was raised from 0 to 2mM, total anaplerosis increased from 5% to 16% of the turnover of citric acid cycle intermediates. Then, [(13)C(3)]propionate abolished anaplerosis from endogenous substrates, glucose, lactate, and pyruvate. Also, while the contents of propionyl-CoA and methylmalonyl-CoA increased with [(13)C(3)]propionate concentration, the content of succinyl-CoA decreased, presumably via activation of succinyl-CoA hydrolysis by a decrease in free CoA. Under our conditions, [(13)C(3)]propionate was a purely anaplerotic substrate since there was no labeling of mitochondrial acetyl-CoA, reflected by the labeling of the acetyl moiety of citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号