首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relative inflammatory roles ofneutrophils, selectins, and terminal complement components areinvestigated in this study of skeletal muscle reperfusion injury. Miceunderwent 2 h of hindlimb ischemia followed by 3 h ofreperfusion. The role of neutrophils was defined by immunodepletion,which reduced injury by 38%, as did anti-selectin therapy withrecombinant soluble P-selectin glycoprotein ligand-immunoglobulin (Ig)fusion protein. Injury in C5-deficient and soluble complement receptortype 1-treated wild-type mice was 48% less than that of untreatedwild-type animals. Injury was restored in C5-deficient micereconstituted with wild-type serum, indicating the effector role ofC5-9. Neutropenic C5-deficient animals showed additive reductionin injuries (71%), which was lower than C5-deficientneutrophil-replete mice, indicating neutrophil activity withoutC5a. Hindlimb histological injury was worse in ischemicwild-type and C5-deficient animals reconstituted with wild-type serum.In conclusion, the membrane attack complex and neutrophils actadditively to mediate skeletal muscle reperfusion injury. Neutrophilactivity is independent of C5a but is dependent on selectin-mediated adhesion.

  相似文献   

2.
Weiser, Martin R., Taine T. V. Pechet, Julian P. Williams,Minghe Ma, Paul S. Frenette, Francis D. Moore, Lester Kobzik, RichardO. Hines, Denisa D. Wagner, Michael C. Carroll, and Herbert B. Hechtman. Experimental murine acid aspiration injury is mediatedby neutrophils and the alternative complement pathway. J. Appl. Physiol. 83(4):1090-1095, 1997.Acid aspiration may result in the development ofthe acute respiratory distress syndrome, an event associated withsignificant morbidity and mortality. Although once attributed to directdistal airway injury, the pulmonary failure after acid aspiration ismore complex and involves an inflammatory injury mediated by complement(C) and polymorphonuclear leukocytes. This study examines the injuriousinflammatory cascades that are activated after acid aspiration. Therole of neutrophils was defined by immunodepletion before aspiration,which reduced injury by 59%. The injury was not modified in either P-or E-selectin-knockout mice, indicating that these adhesion moleculeswere not operative. C activation after aspiration was documented withimmunochemistry by C3 deposition on injured alveolar pneumocytes.Animals in which C activation was inhibited with soluble C receptortype 1 (sCR1) had a 54% reduction in injury, similar to the level ofprotection seen in C3-knockout mice (58%). However C4-knockout micewere not protected from injury, indicating that C activation ismediated by the alternative pathway. Finally, an additive effect ofneutrophils and C was demonstrated whereby neutropenic animals thatwere treated with sCR1 showed an 85% reduction in injury. Thus acidaspiration injury is mediated by neutrophils and the alternative Cpathway.

  相似文献   

3.
We have examined the receptor-ligand interactions and the method of phagocytosis of virulent Mycobacterium tuberculosis by human monocytes. mAb against complement receptors (CR) inhibit adherence and phagocytosis of M. tuberculosis in fresh nonimmune serum. A mAb against the type 1 CR (CR1) inhibits adherence of M. tuberculosis by 40 +/- 5%, and three different mAb against the type 3 CR (CR3) each inhibit adherence by 39 +/- 5% to 47 +/- 4%. A mAb against CR1 used in combination with one of the three mAb against CR3 inhibits adherence by up to 64 +/- 7%. Most strikingly, two mAb used in combination against CR3 inhibit adherence by up to 81 +/- 2%. mAb against other monocyte surface Ag do not significantly influence adherence. In like fashion, mAb against CR but not other monocyte surface Ag inhibit adherence of preopsonized M. tuberculosis in the presence of heat-inactivated serum. By electron microscopy, monocytes ingest all M. tuberculosis that adhere in the presence of nonimmune serum; mAb against CR3 markedly inhibit ingestion. In contrast to CR, the FcR and the beta-glucan-inhibitable receptor for zymosan play little or no role in mediating M. tuberculosis adherence or ingestion. Adherence of M. tuberculosis is serum-dependent, requiring greater than or equal to 2.5% serum for optimal adherence. Heat inactivation of serum markedly reduces adherence of M. tuberculosis (75.5 +/- 7%) and preopsonization of bacteria enhances adherence by 2.9 +/- 0.4-fold. Adherence is also markedly reduced in C3- or factor B-depleted serum; repletion with C3 or factor B increases adherence by 2.1 +/- 0.4-fold and 1.86 +/- 0.05-fold, respectively. Fab anti-C3 IgG markedly inhibits monocyte adherence of preopsonized M. tuberculosis (71 +/- 1%). C component C3 is fixed to M. tuberculosis by the alternative C pathway as determined by a whole bacterial cell ELISA. Human monocytes ingest M. tuberculosis by conventional phagocytosis as viewed by electron microscopy. This study demonstrates that human monocyte CR1 and CR3 mediate phagocytosis of M. tuberculosis and C component C3 in serum is acting as the major bacterium-bound ligand.  相似文献   

4.
The mobilization and extracellular release of nuclear high mobility group box-1 (HMGB1) by ischemic cells activates inflammatory pathways following liver ischemia/reperfusion (I/R) injury. In immune cells such as macrophages, post-translational modification by acetylation appears to be critical for active HMGB1 release. Hyperacetylation shifts its equilibrium from a predominant nuclear location toward cytosolic accumulation and subsequent release. However, mechanisms governing its release by parenchymal cells such as hepatocytes are unknown. In this study, we found that serum HMGB1 released following liver I/R in vivo is acetylated, and that hepatocytes exposed to oxidative stress in vitro also released acetylated HMGB1. Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups and control the acetylation status of histones and various intracellular proteins. Levels of acetylated HMGB1 increased with a concomitant decrease in total nuclear HDAC activity, suggesting that suppression in HDAC activity contributes to the increase in acetylated HMGB1 release after oxidative stress in hepatocytes. We identified the isoforms HDAC1 and HDAC4 as critical in regulating acetylated HMGB1 release. Activation of HDAC1 was decreased in the nucleus of hepatocytes undergoing oxidative stress. In addition, HDAC1 knockdown with siRNA promoted HMGB1 translocation and release. Furthermore, we demonstrate that HDAC4 is shuttled from the nucleus to cytoplasm in response to oxidative stress, resulting in decreased HDAC activity in the nucleus. Together, these findings suggest that decreased nuclear HDAC1 and HDAC4 activities in hepatocytes following liver I/R is a mechanism that promotes the hyperacetylation and subsequent release of HMGB1.  相似文献   

5.
Imposition of ischemia should result in accumulation of lactic acid with an attendant drop in pH. Subsequent reperfusion would result in hyperoxia, in the affected tissue, due to the Bohr Effect. O2- should therefore be produced in greater than normal amounts, due to this transient hyperoxia, and may contribute to reperfusion injury. Tissue acidification, during extreme exercise or in diabetes mellitus, may similarly lead to hyperoxia and to tissue damage by O2-.  相似文献   

6.
While the molecular mechanisms by which oxidants cause cytotoxicity are still poorly understood, disruption of Ca(2+) homeostasis appears to be one of the critical alterations during the oxidant-induced cytotoxic process. Here, we examined the possibility that oxidative stress may alter the metabolism of cyclic ADP-ribose (cADPR), a potent Ca(2+)-mobilizing second messenger in the heart. Isolated heart perfused by Langendorff technique was subjected to ischemia/reperfusion injury and endogenous cADPR level was determined using a specific radioimmunoassay. Following ischemia/reperfusion injury, a significant increase in intracellular cADPR level was observed. The elevation of cADPR content was closely correlated with the increase in ADP-ribosyl cyclase activity. Inclusion of oxygen free radical scavengers, 2,2,6,6-tetramethyl-1-piperidinyloxy and mannitol, in the reperfusate prevented the ischemia/reperfusion-induced increases in cADPR level and the ADP-ribosyl cyclase activity. Exposure of isolated cardiomyocytes to t-butyl hydroperoxide increased the ADP-ribosyl cyclase activity, cADPR level, and intracellular Ca(2+) concentration ([Ca(2+)](i)) and consequently resulting in cell lethal damage. The oxidant-induced elevation of [Ca(2+)](i) as well as cell lethal damage was blocked by a cADPR antagonist, 8-bromo-cADPR. These results provide evidence for involvement of cADPR and its producing enzyme in alteration of Ca(2+) homeostasis during the ischemia/reperfusion injury of the heart.  相似文献   

7.
In the feline intestine studies have implicated superoxide (O.-) and other oxygen derived free radicals as initiators of injury as measured by increased capillary permeability during the reperfusion period. Biochemical mechanisms of this free radical generation include: xanthine oxidase dependent O.- production, hydrogen peroxide (H2O2) formation by superoxide dismutase (SOD), hydroxyl radical (OH-) production via the Haber-Weiss reaction, and lipid radical formation from membrane peroxidation. Pathological consequences of these events include inflammatory neutrophil infiltration, damage to the collagen and mucosal basement membrane, increased capillary permeability, edema, cell degeneration and necrosis. Animal models of neonatal necrotizing enterocolitis (NNEC) indicate that intestinal injury occurs after the etiologic factors (hypothermia, hypoxia) are removed. In order to determine the role of active oxygen species in the pathogenesis of NNEC, weanling hamsters and neonatal piglets were cold stressed and activities of pro/antioxidant enzymes were determined, and histopathologic and ultrastructural studies were performed. Cold stressed weanling hamsters showed a 55.7% (P less than 0.05) decrease in xanthine dehydrogenase/xanthine oxidase activity ratio. Light microscopy revealed scattered colonic mucosal erosions and submucosal edema in 50% of cold stressed animals. Transmission electron microscopy demonstrated degeneration of colonic mucosal epithelial cells, enlarged intracellular spaces, cytoplasmic vacuolization, and nuclear membrane swelling. The colonic serosa was also edematous and infiltrated with bacteria. Large intestinal tissue from cold stressed neonatal piglets showed a significant increase (P less than 0.05) in Mn and Cu, Zn, SOD, CAT, GSH-Red, total GSH, and Glc6-PD at 0 and 12 hrs. post stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The response of endothelial cells (EC) to high radiation doses leads to damage of normal tissue or tumor. The precise mechanisms of the endothelial-tissue linkage are still largely unknown. We investigated the possible involvement of a bystander effect, secondary to endothelial damage, in tissue response to radiation. Proliferating human intestinal epithelial T84 cells were grown in a non-contact co-culture with confluent primary human microvascular EC (HMVEC-L). The bystander response in unirradiated T84 cells co-cultured with irradiated EC was studied by evaluating cell growth, cell death and epithelial morphology. Twenty-four hours after exposure of EC to 15 Gy, unirradiated T84 cells showed a decreased cell number (29%) and percentage in mitosis (66%) as well as increased apoptosis (1.5-fold) and cell surface area (1.5-fold), highlighting the involvement of bystander effects on T84 cells after irradiation of EC. Furthermore, the responses of T84 cells were amplified when EC and T84 cells were irradiated together, indicating that the bystander response in T84 cells adds further to direct radiation damage. As opposed to direct irradiation, the T84 cell bystander response did not involve the cell cycle-related protein p21(Waf1) (CDKN1A) and pro-apoptosis protein BAX. The bystander effect was specific to EC since the irradiation of human colon fibroblasts did not induce bystander responses in unirradiated T84 cells. These results strengthen previous in vivo evidence of the role of EC in tissue damage by radiation. In addition, this study provides a suitable and useful model to identify soluble factors involved in bystander effects secondary to endothelial damage. Modulating such factors may have important clinical implications.  相似文献   

9.
Exchangeable serum apolipoproteins and amphipathic alpha-helical peptides are effective inhibitors of sterol (free and esterified cholesterol) uptake at the small-intestinal brush border membrane. The minimal structural requirement of an inhibitor is an amphipathic alpha-helix of 18 amino acids. The inhibition is competitive, indicating that the inhibitor binds to scavenger receptor class B type I (SR-BI) present in the brush border membrane and responsible for sterol uptake. Binding of apolipoprotein A-I to SR-BI of rabbit brush border membrane is cooperative, characterized by a dissociation constant K(d) = 0.45 microM and a Hill coefficient of n = 2.8. The cooperativity of the interaction is due to binding of the inhibitor molecule to a dimeric or oligomeric form of SR-BI held together by disulfide bridges. Consistent with the competitive nature of the inhibition, the K(d) value agrees within experimental error with the IC(50) value of inhibition and with the inhibition constant K(I). After proteinase K treatment of brush border membrane vesicles, the affinity of the interaction of apolipoprotein A-I expressed as K(d) is reduced by a factor of 20, and the cooperativity is lost. The interaction of proteinase K-treated brush border membrane vesicles with apolipoprotein A-I is nonspecific partitioning of the apolipoprotein into the lipid bilayer of brush border membrane vesicles.  相似文献   

10.
Reperfusion of ischemic tissues elicits an acute inflammatory response involving serum complement, which is activated by circulating natural IgM specific to self-Ags exposed by ischemia. Recent reports demonstrating a role for the lectin pathway raise a question regarding the initial events in complement activation. To dissect the individual roles of natural IgM and lectin in activation of complement, mice bearing genetic deficiency in early complement, IgM, or mannan-binding lectin were characterized in a mesenteric model of ischemia reperfusion injury. The results reveal that IgM binds initially to ischemic Ag providing a binding site for mannan-binding lectin which subsequently leads to activation of complement and injury.  相似文献   

11.
12.
Although acute lung injury (ALI) is an important problem in humans, its pathogenesis is poorly understood. Airway instillation of bacterial LPS, a known complement activator, represents a frequently used model of ALI. In the present study, pathways in the immunopathogenesis of ALI were evaluated. ALI was induced in wild-type, C3(-/-), and C5(-/-) mice by airway deposition of LPS. To assess the relevant inflammatory mediators, bronchoalveolar lavage fluids were evaluated by ELISA analyses and various neutralizing Abs and receptor antagonists were administered in vivo. LPS-induced ALI was neutrophil-dependent, but it was not associated with generation of C5a in the lung and was independent of C3, C5, or C5a. Instead, LPS injury was associated with robust generation of macrophage migration inhibitory factor (MIF), leukotriene B(4) (LTB4), and high mobility group box 1 protein (HMGB1) and required engagement of receptors for both MIF and LTB4. Neutralization of MIF or blockade of the MIF receptor and/or LTB4 receptor resulted in protection from LPS-induced ALI. These findings indicate that the MIF and LTB4 mediator pathways are involved in the immunopathogenesis of LPS-induced experimental ALI. Most strikingly, complement activation does not contribute to the development of ALI in the LPS model.  相似文献   

13.
Smooth muscle proliferation of injured blood vessels leads to pathologically significant stenosis in animals and humans. We report here the pharmacological confirmation of an involvement of angiotensin II in this process as a major, necessary mediator of neointima formation. In the rat carotid artery, an animal model of post-angioplastic restenosis, we have obtained by local intraluminal infusion of peptidic angiotensin II antagonist after balloon catheterization, suppression of neointima formation and preservation of the luminal integrity. Sham operated control animals treated without medication and operated control animals treated simultaneously with angiotensin converting enzyme inhibitor and with agonistic angiotensin II, suffered major stenosis through the myoproliferative response of the injured vessel. These results prove that angiotensin II plays a key role as a mediator of vascular neointima formation.  相似文献   

14.
Tumor necrosis factor (TNF)-alpha and Fas ligand (FasL) are trimeric proteins that induce apoptosis through similar caspase-dependent pathways. Hepatocytes are particularly sensitive to inflammation-induced programmed cell death, although the contribution of TNF-alpha and/or FasL to this injury response is still unclear. Here, we report that D-galactosamine and lipopolysaccharide-induced liver injury in C57BL/6 mice is associated with increased hepatic expression of both TNF-alpha and FasL mRNA. Pretreatment of mice with a TNF-binding protein improved survival, reduced plasma aspartate aminotransferase concentrations, and attenuated the apoptotic liver injury, as determined histologically and by in situ 3' OH end labeling of fragmented nuclear DNA. In contrast, pretreatment of mice with a murine-soluble Fas fusion protein (Fasfp) had only minimal effect on survival, and apoptotic liver injury was either unaffected or exacerbated depending on the dose of Fasfp employed. Similarly, mice with a spontaneous mutation in FasL (B6Smn.C3H-Fasl(gld) derived from C57BL/6) were equally sensitive to D-galactosamine/lipopolysaccharide-induced shock. We conclude that the shock and apoptotic liver injury after D-galactosamine/lipopolysaccharide treatment are due primarily to TNF-alpha release, whereas increased FasL expression appears to contribute little to the mortality and hepatic injury.  相似文献   

15.
16.
Xu Z  Tian J  Smith JS  Byrnes AP 《Journal of virology》2008,82(23):11705-11713
Kupffer cells (KCs) rapidly remove intravenously injected adenovirus (Ad) vectors from the circulation. A better understanding of the mechanisms involved could suggest strategies to improve Ad gene delivery by suppressing or evading KC uptake. We recently showed that clearance of Ad type 5 vectors by KCs does not involve the interaction of Ad with the well-established Ad receptors, namely, integrins or the coxsackievirus and Ad receptor (J. S. Smith, Z. Xu, J. Tian, S. C. Stevenson, and A. P. Byrnes, Hum. Gene Ther. 19:547-554, 2008). In the current study, we systematically quantified the contributions of various receptors and plasma proteins to the clearance of Ad by KCs. We found that scavenger receptors are a predominant mechanism for the clearance of Ad by KCs. In addition, we found that Ad is opsonized by natural immunoglobulin M antibodies and complement and that these opsonins play a contributory role in the clearance of Ad by KCs. We also examined additional mechanisms that have been postulated to be involved in the clearance of Ad, including the binding of Ad to platelets and vitamin K-dependent coagulation factors, but we found that neither of these were required for the clearance of Ad by KCs.  相似文献   

17.
Therole of the sialyl Lewisx (sLex)-decoratedversion of soluble complement receptor type 1 (sCR1) in moderatingskeletal muscle reperfusion injury, by antagonizing neutrophilendothelial selectin interaction and complement activation, isexamined. Mice underwent 2 h of hindlimb ischemia and3 h of reperfusion. Permeability index (PI) was assessed byextravasation of 125I-labeled albumin. Neutrophil depletionand complement inhibition with sCR1 reduced permeability by 72% (PI0.81 ± 0.10) compared with a 42% decrease (PI 1.53 ± 0.08)observed in neutropenic mice, indicating that part of thecomplement-mediated injury is neutrophil independent.sCR1sLex treatment reduced PI by 70% (PI 0.86 ± 0.06), an additional 20% decrease compared with sCR1 treatment (PI1.32 ± 0.08). Treatment with sCR1sLex 0.5 and 1 h after reperfusion reduced permeability by 63% (PI 0.09 ± 0.07)and 52% (PI 1.24 ± 0.09), respectively, compared with therespective decreases of 41% (PI 1.41 ± 0.10) and 32% (PI1.61 ± 0.07) after sCR1 treatment. Muscle immunohistochemistry stained for sCR1 only on the vascular endothelium ofsCR1sLex-treated mice. In conclusion, sCR1sLexis more effective than sCR1 in moderating skeletal muscle reperfusion injury.

  相似文献   

18.
19.
Rabbit IgM antibodies to denatured mammalian or T6 bacteriophage DNA or poly(A)-poly(U) irreversibly lost complement-(C) fixation reactivity on exposure to low pH and reneutralization, with a halving of the complement-fixation titer occurring after treatment at about pH 3. The titers of IgG antibodies to denatured phage DNA, to poly(A)-poly(U), or to hemocyanin were halved only after exposure to pH 2. Inactivation by acid was enhanced by low protein concentrations, incubation at higher temperatures, and by slow reneutralization; under all these conditions it was more extensive with IgM than with IgG. Inactivation of IgM C-fixation activity at pH 2.5 and room temperature was a first order reaction, with a half-time of about 20 min. Both classes retained antigen-binding activity after exposure to pH 2. In the alkaline range, full C-fixation reactivity was retained by both classes after reneutralization from pH 11.5, some loss occurred at pH 12, and total irreversible inactivation occurred by pH 12.5. In the latter case, antigen-binding activity was also lost. The C-fixation inactivation curves in the alkaline range were similar for IgG and IgM antibodies.  相似文献   

20.
Products of cyclooxygenase activity have been proposed to mediate the pulmonary hypertension and increased microvascular permeability associated with phorbol myristate acetate- (PMA) induced acute lung injury. Previously, we reported that thromboxane (Tx) does not mediate PMA-induced pulmonary hypertension in intact anesthetized dogs. In the present study, PMA was administered to isolated canine lungs perfused with autologous blood at constant flow to investigate a possible role for Tx in the PMA-induced increase in microvascular permeability. Changes in permeability were assessed by determining changes in the capillary filtration coefficient (Kfc). In lobes pretreated with papaverine to prevent PMA-induced increases in pulmonary vascular resistance, Kfc increased from a baseline value of 0.2 +/- 0.03 to 1.5 +/- 0.29 ml.min-1.cmH2O-1.100 g wet lobe wt-1 (P < 0.01) 30 min after PMA (5.8 x 10(-8) M, n = 10). Concomitantly, TxB2, the stable metabolite of TxA2, increased from 138 +/- 44 to 1,498 +/- 505 pg/ml (P < 0.05) in the blood. Both the selective Tx synthase inhibitor, OKY-046 (7 x 10(-4) M, n = 6), and the cyclooxygenase inhibitor, indomethacin (10(-4) M, n = 7), prevented the PMA-induced increase in TxB2, but neither compound attenuated the PMA-induced increase in Kfc. ONO-3708 (10(-6) M), a selective prostaglandin (PG) H2/TxA2 receptor antagonist, prevented the vasoconstriction resulting from administration of U-46619, a stable PGH2/TxA2 receptor agonist, but it did not prevent the PMA-induced increases in Kfc (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号