首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Downey, R. J. (University of Notre Dame, Notre Dame, Ind.). Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. J. Bacteriol. 91:634-641. 1966.-Bacillus stearothermophilus 2184 required nitrate to grow in the absence of oxygen. Like many facultative microorganisms, the growth obtained anaerobically was considerably less than that obtained aerobically, even though the dissimilatory reduction of nitrate is, in effect, anaerobic respiration. The ability to reduce nitrate depended on the induction of nitrate reductase. Although oxygen at low levels did not retard induction of the enzyme, enzyme synthesis was considerably lessened by aeration. A semisynthetic medium containing nitrate supported aerobic growth of the thermophile but did not support anaerobic growth. The adaptation to nitrate resulted in a decrease in the level of cytochrome oxidase normally present in aerobically grown cells. Although the aerobic oxidation of succinate by the respiratory enzymes from aerobically grown cells was inhibited by 2-N-heptyl-4-hydroxyquinoline-N-oxide, the anaerobic oxidation of succinate by nitrate in a similar preparation from nitrate-adapted cells was not. The nitrate reductase in the bacillus was strongly inhibited by cyanide and azide but not by carbon monoxide. The nitrate reductase catalyzed the anaerobic oxidation of reduced nicotinamide adenine dinucleotide, and appeared to transfer electrons from cytochrome b(1) to nitrate. Cytochrome c(1) did not appear to be involved in the transfer.  相似文献   

4.
Echinochloa species differ in their ability to germinate and grow in the absence of oxygen. Seeds of Echinochloa crus-pavonis (H.B.K.) Schult do not germinate under anoxia but remain viable for extended periods (at least 30 d) when incubated in an anaerobic environment. E. crus-pavonis can be induced to germinate and grow in an anaerobic environment if the seeds are first subjected to a short (1-18 h) exposure to aerobic conditions (aerobic priming). Changes in polypeptide patterns (constitutive and de novo synthesized) and protein phosphorylation induced by aerobic priming were investigated. In the absence of aerobic priming protein degradation was not evident under anaerobic conditions, although synthesis of a 20-kD polypeptide was induced. During aerobic priming, however, synthesis of 37- and 55-kD polypeptides was induced and persisted upon return of the seeds to anoxia. Furthermore, phosphorylation of two 18-kD polypeptides was observed only in those seeds that were labeled with 32PO4 during the aerobic priming period. Subsequent chasing in an anaerobic environment resulted in a decrease in phosphorylation of these polypeptides. Likewise, phosphorylation of the 18-kD polypeptides was not observed if the seeds were labeled in an anaerobic atmosphere. These results suggest that the regulated induction of the 20-, 37-, and 55- kD polypeptides may be important for anaerobic germination and growth of E. crus-pavonis and that the specific phosphorylation of the 18-kD polypeptides may be a factor in regulating this induction.  相似文献   

5.
Clements LD  Streips UN  Miller BS 《Proteomics》2002,2(12):1724-1734
A comparative investigation of protein expression by two-dimensional gel electrophoresis was conducted between Bacillus subtilis cultures grown in defined medium under aerobic, anaerobic nitrate respiration, or fermentation conditions. Defined medium specific for either nitrate respiration or fermentation allowed distinction between proteins induced by each individual growth process. Our differential protein profiling analysis between aerobic and anaerobic conditions showed that anaerobic fermentation induced at least 44 proteins and nitrate respiration induced at least 19 proteins compared to aerobic controls. Certain proteins were specifically induced during nitrate respiration or fermentation, while others were induced by both anaerobic processes. Eleven proteins induced by nitrate respiration and/or fermentation were identified by peptide mass matching using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteins encoded by feuA, hmp, and ytkD were induced by nitrate respiration. Proteins encoded by pyrR, sucD, trpC, and ywjH were induced by fermentation. Proteins encoded by acuB, pdhC, ydjL, and yvyD were induced by nitrate respiration and fermentation. This proteomic analysis has provided a more complete characterization of B. subtilis anaerobic growth and increased our understanding of its metabolic pathways of nitrate respiration and fermentation.  相似文献   

6.
Two-dimensional gel electrophoresis was used to examine the response of the cellular proteins of Escherichia coli to various anaerobic growth conditions and to the presence or absence of a functional Fnr protein. The steady-state levels of 125 polypeptides were found to vary in either a positive or negative manner, with many polypeptides being affected under a number of conditions. A large number (21) of the anaerobically inducible polypeptides were shown to be totally independent of the presence of Fnr while 22 were shown to be reduced in a fnr mutant under all anaerobic growth conditions tested. A total of 8 proteins were shown to be reduced in a fnr mutant only in aerobically grown cells indicating that the Fnr protein has a function in the presence of oxygen. This was further confirmed by the observation that 15 anaerobically inducible polypeptides were also found to show an increase in aerobically grown cells, however, only in a fnr strain. This latter finding implies that Fnr may also exhibit repressor function. This effect of Fnr-dependent repression was also observed with several polypeptides in anaerobically grown cells.Abbreviation CRP cyclic AMP receptor protein  相似文献   

7.
The rate of in-vivo nitrate reduction by leaf segments of Zea mays L. was found to decline during the second hour of dark anaerobic treatment. On transfer to oxygen the capacity to reduce nitrate under dark conditions was restored. These observations led to the proposal that nitrate reductase is a regulatory enzyme with ADP acting as a negative effector. The effect of ADP on the invitro activity of nitrate reductase and the changes in the in-vivo adenylate pool under dark-N2 and dark-O2 were investigated. It was found that ADP inhibited the activity of partially purified nitrate reductase. Similarly, the in-vivo anaerobic inhibition of nitrate reduction was associated with a build-up of ADP in the leaf tissue. Under anaerobic conditions nitrite accumulated and on transfer to oxygen the accumulated nitrite was reduced. To explain this phenomenon the following hypothesis was proposed and tested. Under anaerobic conditions the supply of reducing equivalents for nitrite reduction in the plastid becomes restricted and nitrite accumulates as a consequence. On transfer to oxygen this restriction is removed and nitrite disappears. This capacity to reduce accumulated nitrite was found to be dependent on the carbohydrate status of the leaf tissue.  相似文献   

8.
Proteins induced by acid or base, during long-term aerobic or anaerobic growth in complex medium, were identified in Escherichia coli. Two-dimensional gel electrophoresis revealed pH-dependent induction of 18 proteins, nine of which were identified by N-terminal sequencing. At pH 9, tryptophan deaminase (TnaA) was induced to a high level, becoming one of the most abundant proteins observed. TnaA may reverse alkalinization by metabolizing amino acids to produce acidic products. Also induced at high pH, but only in anaerobiosis, was glutamate decarboxylase (GadA). The gad system (GadA/GadBC) neutralizes acidity and enhances survival in extreme acid; its induction during anaerobic growth may help protect alkaline-grown cells from the acidification resulting from anaerobic fermentation. To investigate possible responses to internal acidification, cultures were grown in propionate, a membrane-permeant weak acid which acidifies the cytoplasm. YfiD, a homologue of pyruvate formate lyase, was induced to high levels at pH 4.4 and induced twofold more by propionate at pH 6; both of these conditions cause internal acidification. At neutral or alkaline pH, YfiD was virtually absent. YfiD is therefore a strong candidate for response to internal acidification. Acid or propionate also increased the expression of alkyl hydroperoxide reductase (AhpC) but only during aerobic growth. At neutral or high pH, AhpC showed no significant difference between aerobic and anaerobic growth. The increase of AhpC in acid may help protect the cell from the greater concentrations of oxidizing intermediates at low pH. Isocitrate lyase (AceA) was induced by oxygen across the pH range but showed substantially greater induction in acid or in base than at pH 7. Additional responses observed included the induction of MalE at high pH and induction of several enzymes of sugar metabolism at low pH: the phosphotransferase system components ManX and PtsH and the galactitol fermentation enzyme GatY. Overall, our results indicate complex relationships between pH and oxygen and a novel permeant acid-inducible gene, YfiD.  相似文献   

9.
In the presence of nitrate, the major anaerobic respiratory pathway includes formate dehydrogenase (FDH-N) and nitrate reductase (NAR-A), which catalyze formate oxidation coupled to nitrate reduction. Two aerobically expressed isoenzymes, FDH-Z and NAR-Z, have been recently characterized. Enzymatic analysis of plasmid subclones carrying min 88 of the Escherichia coli chromosome was consistent with the location of the fdo locus encoding FDH-Z between the fdhD and fdhE genes which are necessary for the formation of both formate dehydrogenases. The fdo locus produced three proteins (107, 34, and 22 kDa) with sizes similar to those of the subunits of the purified FDH-N. In support to their structural role, these polypeptides were recognized by antibodies specific to FDH-N. Expression of a chromosomal fdo-uidA operon fusion was induced threefold by aerobic growth and about twofold by anaerobic growth in the presence of nitrate. However, it was independent of the two global regulatory proteins FNR and ArcA, which control genes for anaerobic and aerobic functions, respectively, and of the nitrate response regulator protein NARL. In contrast, a mutation affecting either the nucleoid-associated H-NS protein or the CRP protein abolished the aerobic expression. A possible role for FDH-Z during the transition from aerobic to anaerobic conditions was examined. Synthesis of FDH-Z was maximal at the end of the aerobic growth and remained stable after a shift to anaerobiosis, whereas FDH-N production developed only under anaerobiosis. Furthermore, in an fnr strain deprived of both FDH-N and NAR-A activities, aerobically expressed FDH-Z and NAR-Z enzymes were shown to reduce nitrate at the expense of formate under anaerobic conditions, suggesting that this pathway would allow the cell to respond quickly to anaerobiosis.  相似文献   

10.
The in planta induction of anaerobic nitrate respiration by Erwinia carotovora subsp. atroseptica in relation to the in situ oxygen status in soft rotting potato tubers has been investigated. In vitro experiments have shown that nitrate was required for the induction of respiratory nitrate reductase activity in E. carotovora. In addition, oxygen was found to repress this activity. Expression of respiratory nitrate reductase was found in E. carotovora cells extracted from soft rotting potato tuber tissue. However, the rate of nitrite production in these cells was approximately 70-fold lower than the rate recorded in fully induced anaerobic cultures. Oxygen measurements in soft rotting potato tubers indicated that the invading bacteria encounter the lowest oxygen concentration at the interphase between healthy and macerated tissue. Consequently, growth of bacteria present in this specific zone will be stimulated by nitrate which is present in sufficient amounts in tuber tissue. A high nitrate content of the tuber will most likely facilitate the proliferation of E. carotovora in the tuber tissue.  相似文献   

11.
This study characterized the contribution of the twin-arginine translocation (TAT) pathway to growth, motility, and virulence of the phytopathogen Agrobacterium tumefaciens. In contrast to wild-type strain A348, a tatC null mutant failed to export the green fluorescent protein fused to the trimethylamine N-oxide reductase (TorA) signal sequence or to grow on nitrate as a sole electron acceptor during anaerobic growth. The tatC mutant displayed defects in growth rate and cell division but not in cell viability, and it also released abundant levels of several proteins into the culture supernatant when grown in rich medium or in vir induction minimal medium. Nearly all A348 cells were highly motile in both rich and minimal media. By contrast, approximately 0.1% of the tatC mutant cells were motile in rich medium, and <0.01% were motile in vir induction medium. Nonmotile tatC mutant cells lacked detectable flagella, whereas motile tatC mutant cells collected from the edge of a motility halo possessed flagella but not because of reversion to a functional TAT system. Motile tatC cells failed to exhibit chemotaxis toward sugars under aerobic conditions or towards nitrate under anaerobic conditions. The tatC mutant was highly attenuated for virulence, only occasionally (approximately 15% of inoculations) inciting formation of small tumors on plants after a prolonged incubation period of 6 to 8 weeks. However, an enriched subpopulation of motile tatC mutants exhibited enhanced virulence compared to the nonmotile variants. Finally, the tatC mutant transferred T-DNA and protein effectors to plant cells and a mobilizable IncQ plasmid to agrobacterial recipients at wild-type levels. Together, our findings establish that, in addition to its role in secretion of folded cofactor-bound enzymes functioning in alternative respiration, the TAT system of A. tumefaciens is an important virulence determinant. Furthermore, this secretion pathway contributes to flagellar biogenesis and chemotactic responses but not to sensory perception of plant signals or the assembly of a type IV secretion system.  相似文献   

12.
The maize response regulator genes ZmRR1 and ZmRR2 respond to cytokinin, and the translated products seem to be involved in nitrogen signal transduction mediated by cytokinin through the His-Asp phosphorelay. To elucidate the physiological function of the proteins, we examined the temporal and spatial distribution in maize leaves by immunochemical analysis and use of transgenic plants. ZmRR1 and ZmRR2 polypeptides could be distinctively detected by western blotting. The polypeptides accumulated in leaves within 5 h of the supply of nitrate to nitrogen-depleted maize, and the accumulation was transient. The extent of induction was larger in the leaf tip, which is rich in photosynthetically matured cells, than elsewhere. In leaves, the polypeptides accumulated mostly in mesophyll cells. Histochemical analyses of transgenic maize harboring a ZmRR1 promoter-beta-glucuronidase fusion gene also showed most of the expression to be in these cells. These results suggest that ZmRR1 and ZmRR2 are induced in mesophyll cells and function in nitrogen signal transduction mediated by cytokinin.  相似文献   

13.
The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.  相似文献   

14.
Enterobacter aerogenes was grown in continous culture with ammonia as the growth-limiting substrate, and changes in citrate lyase and citrate synthase activities were monitored after growth shifts from anaerobic growth on citrate to aerobic growth on citrate, aerobic growth on glucose, anaerobic growth on glucose, and anaerobic growth on glucose plus nitrate. Citrate lyase was inactivated during aerobic growth on glucose and during anaerobic growth with glucose plus nitrate. Inactivation did not occur during anaerobic growth on glucose, and as a result of the simultaneous presence of citrate lyase and citrate synthase, growth difficulties were observed. Citrate lyase inactivation consisted of deacetylation of the enzyme. The corresponding deacetylase could not be demonstrated in cell extracts, and it is concluded that, as in a number of other inactivations, electron transport to oxygen or nitrate was required for inactivation.  相似文献   

15.
The Gram-positive bacterium Bacillus cereus is a facultative anaerobe that is still poorly characterized metabolically. In this study, the aerobic vegetative growth and anaerobic vegetative growth of the food-borne pathogen B. cereus F4430/73 strain were compared with those of the genome-sequenced ATCC14579 strain using glucose and glycerol as fermentative and nonfermentative carbon sources, respectively. Uncontrolled batch cultures on several defined media showed that B. cereus strains had high amino acid or pyruvate requirements for anaerobic fermentative growth. In addition, growth performance was considerably improved by maintaining the pH of the culture medium near neutrality. Spectra of fermentation by-products were typically (per mole of glucose) 0.2-0.4 acetate, 1.1-1.4 L-lactate, 0.3-0.4 formate, and 0.05-0.2 ethanol with only traces of succinate, pyruvate, and 2,3-butanediol. These spectra were drastically changed in the presence of 20 mmol nitrate x L(-1), which stimulated anaerobic growth. During anaerobic and aerobic respiration, the persistent production of acetate and other by-products indicated overflow metabolisms. This was especially true in glucose-grown cells for which respiratory complex III made only a minor contribution to growth. Surprisingly, oxygen uptake rates linked to the cytochrome c and quinol branches of the respiratory chain were maintained at high levels in anaerobic, respiring, or fermenting cells. Growth and metabolic features of B. cereus F4430/73 are discussed using biochemical and genomic data.  相似文献   

16.
17.
A mutant of Pseudomonas aeruginosa was characterized which could not grow anaerobically with nitrate as the terminal electron acceptor or with arginine as the sole energy source. In this anr mutant, nitrate reductase and arginine deiminase were not induced by oxygen limitation. The anr mutation was mapped in the 60-min region of the P. aeruginosa chromosome. A 1.3-kb chromosomal fragment from P. aeruginosa complemented the anr mutation and also restored anaerobic growth of an Escherichia coli fnr deletion mutant on nitrate medium, indicating that the 1.3-kb fragment specifies an FNR-like regulatory protein. The arcDABC operon, which encodes the arginine deiminase pathway enzymes of P. aeruginosa, was rendered virtually noninducible by a deletion or an insertion in the -40 region of the arc promoter. This -40 sequence (TTGAC....ATCAG) strongly resembled the consensus FNR-binding site (TTGAT....ATCAA) of E. coli. The cloned arc operon was expressed at low levels in E. coli; nevertheless, some FNR-dependent anaerobic induction could be observed. An FNR-dependent E. coli promoter containing the consensus FNR-binding site was expressed well in P. aeruginosa and was regulated by oxygen limitation. These findings suggest that P. aeruginosa and E. coli have similar mechanisms of anaerobic control.  相似文献   

18.
19.
G Sawers  A Bck 《Journal of bacteriology》1988,170(11):5330-5336
The anaerobic regulation of the gene encoding pyruvate formate-lyase from Escherichia coli was investigated. Expression of a pfl'-'lacZ protein fusion demonstrated that the gene is subject to a 12-fold anaerobic induction which can be stimulated a further 2-fold by the addition of pyruvate to the growth medium. Construction of a strain deleted for pfl verified that either pyruvate or a metabolite of glycolysis functions as an inducer of pfl gene expression. Complete anaerobic induction required the presence of a functional fnr gene product. However, the dependence was not absolute since a two- to threefold anaerobic induction could still be observed in an fnr mutant. These results could be confirmed immunologically by analyzing the levels of pyruvate formate-lyase protein present in cells grown under various conditions. It was also shown that pfl'-'lacZ expression was partially repressed by nitrate and that this repression was mediated by the narL gene product.  相似文献   

20.
The influence of growth conditions on assimilatory and respiratory nitrate reduction in Aerobacter aerogenes was studied. The level of nitrate reductase activity in cells, growing in minimal medium with nitrate as the sole nitrogen source, was much lower under aerobic than anaerobic conditions. Further, the enzyme of the aerobic cultures was very sensitive to sonic disintegration, as distinct from the enzyme of anaerobic cultures. When a culture of A. aerogenes was shifted from anaerobic growth in minimal medium with nitrate and NH(4) (+) to aerobiosis in the same medium, but without NH(4) (+), the production of nitrite stopped instantaneously and the total activity of nitrate reductase decreased sharply. Moreover, there was a lag in growth of about 3 hr after such a shift. After resumption of growth, the total enzymatic activity increased again slowly and simultaneously became gradually sensitive to sonic disintegration. These findings show that oxygen inactivates the anaerobic nitrate reductase and represses its further formation; only after a de novo synthesis of nitrate reductase with an assimilatory function will growth be resumed. The enzyme in aerobic cultures was not significantly inactivated by air, only by pure oxygen. The formation of the assimilatory enzyme complex was repressed, however, by NH(4) (+), under both aerobic and anaerobic conditions. The results indicate that the formation of the assimilatory enzyme complex and that of the respiratory enzyme complex are regulated differently. We suggest that both complexes have a different composition, but that the nitrate reductase in both cases is the same protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号