首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   

2.
CD28 plays crucial costimulatory roles in T cell proliferation, cytokine production, and germinal center response. Mice that are deficient in the inducible costimulator (ICOS) also have defects in cytokine production and germinal center response. Because the full induction of ICOS in activated T cells depends on CD28 signal, the T cell costimulatory capacity of ICOS in the absence of CD28 has remained unclear. We have clarified this issue by comparing humoral immune responses in wild-type, CD28 knockout (CD28 KO), and CD28-ICOS double-knockout (DKO) mice. DKO mice had profound defects in Ab responses against environmental Ags, T-dependent protein Ags, and vesicular stomatitis virus that extended far beyond those observed in CD28 KO mice. However, DKO mice mounted normal Ab responses against a T-independent Ag, indicating that B cell function itself was normal. Restimulated CD4(+) DKO T cells that had been primed in vivo showed decreased proliferation and reduced IL-4 and IL-10 production compared with restimulated CD4(+) T cells from CD28 KO mice. Thus, in the absence of CD28, ICOS assumes the major T cell costimulatory role for humoral immune responses. Importantly, CD28-mediated ICOS up-regulation is not essential for ICOS function in vivo.  相似文献   

3.
We characterized CD8(+) T cells constitutively expressing CD25 in mice lacking the expression of MHC class II molecules. We showed that these cells are present not only in the periphery but also in the thymus. Like CD4(+)CD25(+) T cells, CD8(+)CD25(+) T cells appear late in the periphery during ontogeny. Peripheral CD8(+)CD25(+) T cells from MHC class II-deficient mice also share phenotypic and functional features with regulatory CD4(+)CD25(+) T cells: in particular, they strongly express glucocorticoid-induced TNFR family-related gene, CTLA-4 and Foxp3, produce IL-10, and inhibit CD25(-) T cell responses to anti-CD3 stimulation through cell contacts with similar efficiency to CD4(+)CD25(+) T cells. However, unlike CD4(+)CD25(+) T cells CD8(+)CD25(+) T cells from MHC class II-deficient mice strongly proliferate and produce IFN-gamma in vitro in response to stimulation in the absence of exogenous IL-2.  相似文献   

4.
5.
6.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

7.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

8.
Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells   总被引:15,自引:0,他引:15  
Despite expression of the high-affinity IL-2R, CD4(+)CD25(+) regulatory T cells (Tregs) are hypoproliferative upon IL-2R stimulation in vitro. However the mechanisms by which CD4(+)CD25(+) T cells respond to IL-2 signals are undefined. In this report, we examine the cellular and molecular responses of CD4(+)CD25(+) Tregs to IL-2. IL-2R stimulation results in a G(1) cell cycle arrest, cellular enlargement and increased cellular survival of CD4(+)CD25(+) T cells. We find a distinct pattern of IL-2R signaling in which the Janus kinase/STAT pathway remains intact, whereas IL-2 does not activate downstream targets of phosphatidylinositol 3-kinase. Negative regulation of phosphatidylinositol 3-kinase signaling and IL-2-mediated proliferation of CD4(+)CD25(+) T cells is inversely associated with expression of the phosphatase and tensin homologue deleted on chromosome 10, PTEN.  相似文献   

9.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

10.
Studies on humans and rodents have established that functional deterioration of CD4 T cells occurs with aging. We report in this study that approximately 70% of CD4(+)CD25(-) T cell preparations from individual 24-mo-old mice are hyporesponsive to in vitro stimulation with anti-CD3 Ab. The remaining 30% of CD4(+)CD25(-) T cell preparations showing the intermediate or normal responsiveness in the primary stimulation also exhibit the hyporesponsive properties after primary stimulation. Both of these hyporesponsive aged CD4(+)CD25(-) T cells could inhibit the proliferation of cocultured CD4(+)CD25(-) T cells from young mice, like CD4(+)CD25(+) T cells, which have recently been demonstrated as an immune regulator in young mice. Another experiment revealed that hyporesponsive aged CD4(+)CD25(-) T cells arrest the cell division of cocultured young CD4(+)CD25(-) T cells. The suppressive activity observed in aged CD4(+)CD25(-) T cells is aging-dependent, not mediated by humoral factors, cell-contact dependent, and broken by the addition of IL-2 or anti-GITR Ab, but not by anti-CTLA-4 Ab. These studies show that aging not only leads to a decline in the ability to mount CD4(+)CD25(-) T cell responses, but at the same time, also renders these aged CD4(+)CD25(-) T cells suppressive.  相似文献   

11.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

12.
We show that the lymphoid hyperplasia observed in IL-2Ralpha- and IL-2-deficient mice is due to the lack of a population of regulatory cells essential for CD4 T cell homeostasis. In chimeras reconstituted with bone marrow cells from IL-2Ralpha-deficient donors, restitution of a population of CD25(+)CD4(+) T cells prevents the chaotic accumulation of lymphoid cells, and rescues the mice from autoimmune disease and death. The reintroduction of IL-2-producing cells in IL-2-deficient chimeras establishes a population of CD25(+)CD4(+) T cells, and restores the peripheral lymphoid compartments to normal. The CD25(+)CD4(+) T cells regulated selectively the number of naive CD4(+) T cells transferred into T cell-deficient hosts. The CD25(+)CD4(+)/naive CD4 T cell ratio and the sequence of cell transfer determines the homeostatic plateau of CD4(+) T cells. Overall, our findings demonstrate that IL-2Ralpha is an absolute requirement for the development of the regulatory CD25(+)CD4(+) T cells that control peripheral CD4 T cell homeostasis, while IL-2 is required for establishing a sizeable population of these cells in the peripheral pools.  相似文献   

13.
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential.  相似文献   

14.
Mice infected with Schistosoma mansoni develop polarized Th2 responses in which Th1 responses are prevented by IL-10-mediated suppression of IL-12 production. We show that dendritic cells from infected mice are primed to make IL-12 in response to CD40 ligation, and that IL-10 acts by inhibiting this process. In infected mice, two subpopulations of CD4(+) cells, separable by their expression of CD25, make IL-10. CD25(+)CD4(+) cells expressed forkhead box P3, inhibited proliferation of CD4(+) T cells, and made IL-10, but little IL-5. In contrast, CD25(-)CD4(+) cells failed to express forkhead box P3 or to inhibit proliferation and accounted for all the IL-5, IL-6, and IL-13 produced by unseparated splenic populations. Thus, CD25(+) and CD25(-) subpopulations could be characterized as regulatory T cells (Treg cells) and Th2 cells, respectively. Consistent with their ability to make IL-10, both CD25(+) and CD25(-)CD4(+) T cells from infected mice were able, when stimulated with egg Ag, to suppress IL-12 production by CD40 agonist-stimulated dendritic cells. Additionally, in adoptive transfer experiments, both CD4(+) subpopulations of cells were able to partially inhibit the development of Th1 responses in egg-immunized IL-10(-/-) mice. The relationship of Treg cells in infected mice to natural Treg cells was strongly suggested by the ability of CD25(+)CD4(+) cells from naive mice to inhibit Th1 response development when transferred into egg-immunized or infected IL-10(-/-) mice. The data suggest that natural Treg cells and, to a lesser extent, Th2 cells play roles in suppressing Th1 responses and ensuring Th2 polarization during schistosomiasis.  相似文献   

15.
A massive systemic expansion of CD8(+) memory T (T(M)) cells and a remarkable increase in circulating IL-2 were observed only in IL-2Ralpha (CD25) knockout (KO) mice but not in IL-2 KO and scurfy mice, although all three mutants lack regulatory T (Treg) cells. However, both phenotypes were suppressed by the transfer of Treg cells. The data presented indicate that Treg cell deficiency drives naive T cells to T(M) cells. The lack of high-affinity IL-2R in IL-2Ralpha KO mice increases circulating IL-2 that is then preferentially used by CD8(+) T(M) cells through its abundant low-affinity IL-2R, resulting in systemic CD8(+) T(M) cell dominance. Our study demonstrates the critical control of CD8(+) T(M) cell homeostasis by a Treg cell-dependent novel function of CD25 and resolves its mechanism of action.  相似文献   

16.
The induction and perpetuation of chronic colitis are thought to involve a complex set of adhesive interactions between T cells and endothelial cells located on the vasculature within secondary lymphoid tissue and the intestine. The objective of this study was to assess the roles of T cell-associated CD18, CD62L (L-selectin), ICAM-1, and P-selectin glycoprotein ligand-1 (PSGL-1) in the induction of chronic colitis in mice. CD4(+)CD25(-) T cells derived from either wild-type (WT), CD18-deficient [CD18 knockout (KO)], CD62L KO, ICAM-1 KO, or PSGL-1 KO mice were adoptively transferred into recombinase activating gene-1 (RAG-1)-deficient mice (RAG KO mice) to assess the potential of these T cells to induce chronic colitis. At 8-10 wk following T cell transfer, we observed moderate to severe colitis as assessed by increases in colon weight-to-length ratios and by blinded histopathological analysis. In contrast, we found that transfer of CD18 KO T cells into RAG KO recipients resulted in the significant attenuation of colonic inflammation in these mice. Furthermore, we observed fewer infiltrating CD4(+) T cells in the colonic lamina propria in the CD18 KO-->RAG KO group compared with the WT-->RAG KO group. Finally, message levels of colonic TNF-alpha, IL-1beta, and IFN-gamma were significantly reduced in CD18 KO-->RAG KO mice compared with colitic control animals. We conclude that T cell-associated CD18, but not CD62L, ICAM-1, or PSGL-1, is required for the development of chronic colitis.  相似文献   

17.
CD4+CD25+ regulatory T cells control innate immune reactivity after injury   总被引:10,自引:0,他引:10  
Major injury initiates a systemic inflammatory response that can be detrimental to the host. We have recently reported that burn injury primes innate immune cells for a progressive increase in TLR4 and TLR2 agonist-induced proinflammatory cytokine production and that this inflammatory phenotype is exaggerated in adaptive immune system-deficient (Rag1(-/-)) mice. The present study uses a series of adoptive transfer experiments to determine which adaptive immune cell type(s) has the capacity to control innate inflammatory responses after injury. We first compared the relative changes in TLR4- and TLR2-induced TNF-alpha, IL-1beta, and IL-6 production by spleen cell populations prepared from wild-type (WT), Rag1(-/-), CD4(-/-), or CD8(-/-) mice 7 days after sham or burn injury. Our findings indicated that splenocytes prepared from burn-injured CD8(-/-) mice displayed TLR-induced cytokine production levels similar to those in WT mice. In contrast, spleen cells from burn-injured CD4(-/-) mice produced cytokines at significantly higher levels, equivalent to those in Rag1(-/-) mice. Moreover, reconstitution of Rag1(-/-) or CD4(-/-) mice with WT CD4(+) T cells reduced postinjury cytokine production to WT levels. Additional separation of CD4(+) T cells into CD4(+)CD25(+) and CD4(+)CD25(-) subpopulations before their adoptive transfer into Rag1(-/-) mice showed that CD4(+)CD25(+) T cells were capable of reducing TLR-stimulated cytokine production levels to WT levels, whereas CD4(+)CD25(-) T cells had no regulatory effect. These findings suggest a previously unsuspected role for CD4(+)CD25(+) T regulatory cells in controlling host inflammatory responses after injury.  相似文献   

18.
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.  相似文献   

19.
20.
We have previously shown that mice lacking the IL-12-specific receptor subunit beta2 (IL-12Rbeta2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rbeta2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rbeta2(-/-) mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rbeta2-deficient mice to autoimmune diseases. T cells from IL-12Rbeta2(-/-) mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) in the thymus and spleen of IL-12Rbeta2(-/-) mice were comparable to those of WT mice. However, IL-12Rbeta2(-/-) mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-beta, as shown by significantly lower numbers of CD25(+)CD4(+) T cells that expressed Foxp3. Functionally, CD25(+)CD4(+) Tregs derived from IL-12Rbeta2(-/-) mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rbeta2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rbeta2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号