首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Selection signatures aim to identify genomic regions underlying recent adaptations in populations. However, the effects of selection in the genome are difficult to distinguish from random processes, such as genetic drift. Often associations between selection signatures and selected variants for complex traits is assumed even though this is rarely (if ever) tested. In this paper, we use 8 breeds of domestic cattle under strong artificial selection to investigate if selection signatures are co-located in genomic regions which are likely to be under selection.

Results

Our approaches to identify selection signatures (haplotype heterozygosity, integrated haplotype score and FST) identified strong and recent selection near many loci with mutations affecting simple traits under strong selection, such as coat colour. However, there was little evidence for a genome-wide association between strong selection signatures and regions affecting complex traits under selection, such as milk yield in dairy cattle. Even identifying selection signatures near some major loci was hindered by factors including allelic heterogeneity, selection for ancestral alleles and interactions with nearby selected loci.

Conclusions

Selection signatures detect loci with large effects under strong selection. However, the methodology is often assumed to also detect loci affecting complex traits where the selection pressure at an individual locus is weak. We present empirical evidence to suggests little discernible ‘selection signature’ for complex traits in the genome of dairy cattle despite very strong and recent artificial selection.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-246) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
Anadromous Chinook salmon populations vary in the period of river entry at the initiation of adult freshwater migration, facilitating optimal arrival at natal spawning. Run timing is a polygenic trait that shows evidence of rapid parallel evolution in some lineages, signifying a key role for this phenotype in the ecological divergence between populations. Studying the genetic basis of local adaptation in quantitative traits is often impractical in wild populations. Therefore, we used a novel approach, Random Forest, to detect markers linked to run timing across 14 populations from contrasting environments in the Columbia River and Puget Sound, USA. The approach permits detection of loci of small effect on the phenotype. Divergence between populations at these loci was then examined using both principle component analysis and FST outlier analyses, to determine whether shared genetic changes resulted in similar phenotypes across different lineages. Sequencing of 9107 RAD markers in 414 individuals identified 33 predictor loci explaining 79.2% of trait variance. Discriminant analysis of principal components of the predictors revealed both shared and unique evolutionary pathways in the trait across different lineages, characterized by minor allele frequency changes. However, genome mapping of predictor loci also identified positional overlap with two genomic outlier regions, consistent with selection on loci of large effect. Therefore, the results suggest selective sweeps on few loci and minor changes in loci that were detected by this study. Use of a polygenic framework has provided initial insight into how divergence in a trait has occurred in the wild.  相似文献   

4.
Natural populations that evolve under extreme climates are likely to diverge because of selection in local environments. To explore whether local adaptation has occurred in redband trout (Oncorhynchus mykiss gairdneri) occupying differing climate regimes, we used a limited genome scan approach to test for candidate markers under selection in populations occurring in desert and montane streams. An environmental approach to identifying outlier loci, spatial analysis method and linear regression of minor allele frequency with environmental variables revealed six candidate markers (P < 0.01). Putatively neutral markers identified high genetic differentiation among desert populations relative to montane sites, likely due to intermittent flows in desert streams. Additionally, populations exhibited a highly significant pattern of isolation by temperature (P< 0.0001) and those adapted to the same environment had similar allele frequencies across candidate markers, indicating selection for differing climates. These results imply that many genes are involved in the adaptation of redband trout to differing environments, and selection acts to reinforce localization. The potential to predict genetic adaptability of individuals and populations to changing environmental conditions may have profound implications for species that face extensive anthropogenic disturbances.  相似文献   

5.
Selection processes are believed to be an important evolutionary driver behind the successful establishment of nonindigenous species, for instance through adaptation for invasiveness (e.g. dispersal mechanisms and reproductive allocation). However, evidence supporting this assumption is still scarce. Genome scans have often identified loci with atypical patterns of genetic differentiation (i.e. outliers) indicative of selection processes. Using microsatellite‐ and AFLP‐based genome scans, we looked for evidence of selection following the introduction of the mollusc Crepidula fornicata. Native to the northwestern Atlantic, this gastropod has become an emblematic invader since its introduction during the 19th and 20th centuries in the northeastern Atlantic and northeastern Pacific. We examined 683 individuals from seven native and 15 introduced populations spanning the latitudinal introduction and native ranges of the species. Our results confirmed the previously documented high genetic diversity in native and introduced populations with little genetic structure between the two ranges, a pattern typical of marine invaders. Analysing 344 loci, no outliers were detected between the introduced and native populations or in the introduced range. The genomic sampling may have been insufficient to reveal selection especially if it acts on traits determined by a few genes. Eight outliers were, however, identified within the native range, underlining a genetic singularity congruent with a well‐known biogeographical break along the Florida. Our results call into question the relevance of AFLP genome scans in detecting adaptation on the timescale of biological invasions: genome scans often reveal long‐term adaptation involving numerous genes throughout the genome but seem less effective in detecting recent adaptation from pre‐existing variation on polygenic traits. This study advocates other methods to detect selection effects during biological invasions—for example on phenotypic traits, although genome scans may remain useful for elucidating introduction histories.  相似文献   

6.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

7.
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large‐scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction‐site associated DNA sequencing and used these data to discover genome‐wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range‐edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non‐native species to invade novel environments.  相似文献   

8.
Genome scans have been an important approach for discovering historical signatures of selection in both model and nonmodel species. An exciting new experimental design for genome scans is to measure the change in allele frequency before and after contemporary selection within a generation, from a single population. The most widely‐used methods, however, have two major limitations: they are based on testing one locus at a time, and they only have power to uncover loci that have evolved under relatively strong selection. On the other hand, complex quantitative traits are common in nature and are caused by several loci of small effect. Selection on a quantitative trait at the phenotypic level is predicted to be accompanied by subtle allele frequency changes in many loci that covary (a polygenic soft sweep), rather than a large, single‐effect allele (a selective sweep). In this issue of Molecular Ecology, Bourret et al. (2014) measure the contemporary response to natural selection across the genome in multiple cohorts of Atlantic salmon during their first year at sea. They introduce a multilocus framework based on groups of markers that covary in their genotypic distribution. While the traditional, single‐locus approach did not find evidence for repeated patterns of selection, the multivariate approach found that a group of covarying SNPs was selected for in different cohorts at one site. Their multilocus framework has potential to be a more fruitful approach for uncovering the genomic basis of adaptation in quantitative traits, although caution should be applied as the framework has yet to be validated with simulated data.  相似文献   

9.
Reggiana is an autochthonous cattle breed reared mainly in the province of Reggio Emilia, located in the North of Italy. Reggiana cattle (originally a triple-purpose population largely diffused in the North of Italy) are characterised by a typical solid red coat colour. About 2500 cows of this breed are currently registered to its herd book. Reggiana is now considered a dual-purpose breed even if it is almost completely dedicated to the production of a mono-breed branded Protected Designation of Origin Parmigiano-Reggiano cheese, which is the main driver of the sustainable conservation of this local genetic resource. In this study, we provided the first overview of genomic footprints that characterise Reggiana and define the diversity of this local cattle breed. A total of 168 Reggiana sires (all bulls born over 35 years for which semen was available) and other 3321 sires from 3 cosmopolitan breeds (Brown, Holstein and Simmental) were genotyped with the Illumina BovineSNP50 panel. ADMIXTURE analysis suggested that Reggiana breed might have been influenced, at least in part, by the other three breeds included in this study. Selection signatures in the Reggiana genome were identified using three statistical approaches based on allele frequency differences among populations or on properties of haplotypes segregating in the populations (fixation index (FST); integrated haplotype score; cross-population extended haplotype homozygosity). We identified several regions under peculiar selection in the Reggiana breed, particularly on bovine chromosome (BTA) 6 in the KIT gene region, that is known to be involved in coat colour pattern distribution, and within the region of the LAP3, NCAPG and LCORL genes, that are associated with stature, conformation and carcass traits. Another already known region that includes the PLAG1 gene (BTA14), associated with conformation traits, showed a selection signature in the Reggiana cattle. On BTA18, a signal of selection included the MC1R gene that causes the red coat colour in cattle. Other selection sweeps were in regions, with high density of quantitative trait loci for milk production traits (on BTA20) and in several other large regions that might have contributed to shape and define the Reggiana genome (on BTA17 and BTA29). All these results, overall, indicate that the Reggiana genome might still contain several signs of its multipurpose and non-specialised utilisation, as already described for other local cattle populations, in addition to footprints derived by its ancestral origin and by its adaptation to the specialised Parmigiano-Reggiano cheese production system.  相似文献   

10.
Today, with the rapid development of population genomics, the genetic basis of adaptation can be unraveled directly at the genome level, without any prerequisites about the selectively advantageous genes or traits. For nonmodel species, it is now possible to screen many markers randomly scattered across the genome and to distinguish between the neutral genetic background and outlier loci displaying an atypical behavior (e.g., a higher differentiation between populations). This study investigated the genetic frame of adaptation to a gradient of altitude in the common frog (Rana temporaria) by means of a genome scan based on 392 amplified fragment length polymorphism markers. Using two outlier detection methods never applied to dominant data so far, we sought for loci with a genetic differentiation diverging from neutral expectations when comparing populations from different altitudes. All the detected loci were sorted out according to their most probable cause for outlier behavior and classified as false positives, outliers due to local effects, or outliers associated with altitude. Altogether, eight good candidate loci were identified as potentially involved in adaptation to altitude because they were picked out in several independent interaltitude comparisons. This result illustrated the potential of genome-wide surveys to reveal selection signatures along selection gradients, where the association between environmental variables and fitness-related traits may be complex and/or cryptic. In this article, we also underlined the need for confirmation of the selection footprints for the outlier loci. Finally, we provided some preliminary insights into the genetic basis of adaptation along an altitudinal cline in the common frog.  相似文献   

11.
Understanding the genomic signatures, genes, and traits underlying local adaptation of organisms to heterogeneous environments is of central importance to the field evolutionary biology. To identify loci underlying local adaptation, models that combine allelic and environmental variation while controlling for the effects of population structure have emerged as the method of choice. Despite being evaluated in simulation studies, there has not been a thorough investigation of empirical evidence supporting local adaptation across these alleles. To evaluate these methods, we use 875 Arabidopsis thaliana Eurasian accessions and two mixed models (GEMMA and LFMM) to identify candidate SNPs underlying local adaptation to climate. Subsequently, to assess evidence of local adaptation and function among significant SNPs, we examine allele frequency differentiation and recent selection across Eurasian populations, in addition to their distribution along quantitative trait loci (QTL) explaining fitness variation between Italy and Sweden populations and cis‐regulatory/nonsynonymous sites showing significant selective constraint. Our results indicate that significant LFMM/GEMMA SNPs show low allele frequency differentiation and linkage disequilibrium across locally adapted Italy and Sweden populations, in addition to a poor association with fitness QTL peaks (highest logarithm of odds score). Furthermore, when examining derived allele frequencies across the Eurasian range, we find that these SNPs are enriched in low‐frequency variants that show very large climatic differentiation but low levels of linkage disequilibrium. These results suggest that their enrichment along putative functional sites most likely represents deleterious variation that is independent of local adaptation. Among all the genomic signatures examined, only SNPs showing high absolute allele frequency differentiation (AFD) and linkage disequilibrium (LD) between Italy and Sweden populations showed a strong association with fitness QTL peaks and were enriched along selectively constrained cis‐regulatory/nonsynonymous sites. Using these SNPs, we find strong evidence linking flowering time, freezing tolerance, and the abscisic‐acid pathway to local adaptation.  相似文献   

12.
13.
Background

Design of new highly productive livestock breeds, well-adapted to local climatic conditions is one of the aims of modern agriculture and breeding. The genetics underlying economically important traits in cattle are widely studied, whereas our knowledge of the genetic mechanisms of adaptation to local environments is still scarce. To address this issue for cold climates we used an integrated approach for detecting genomic intervals related to body temperature maintenance under acute cold stress. Our approach combined genome-wide association studies (GWAS) and scans for signatures of selection applied to a cattle population (Hereford and Kazakh Whiteheaded beef breeds) bred in Siberia. We utilized the GGP HD150K DNA chip containing 139,376 single nucleotide polymorphism markers.

Results

We detected a single candidate region on cattle chromosome (BTA)15 overlapping between the GWAS results and the results of scans for selective sweeps. This region contains two genes, MSANTD4 and GRIA4. Both genes are functional candidates to contribute to the cold-stress resistance phenotype, due to their indirect involvement in the cold shock response (MSANTD4) and body thermoregulation (GRIA4).

Conclusions

Our results point to a novel region on BTA15 which is a candidate region associated with the body temperature maintenance phenotype in Siberian cattle. The results of our research and the follow up studies might be used for the development of cattle breeds better adapted to cold climates of the Russian Federation and other Northern countries with similar climates.

  相似文献   

14.
Convergent evolution represents one of the best lines of evidence for adaptation, but few cases of phenotypic convergence are understood at the genetic level. Guppies inhabiting the Northern Mountain Range of Trinidad provide a classic example of phenotypic convergent evolution, where adaptation to low or high predation environments has been found for a variety of traits. A major advantage of this system is the possibility of long‐term experimental studies in nature, including transplantation from high to low predation sites. We used genome scans of guppies from three natural high and low predation populations and from two experimentally established populations and their sources to examine whether phenotypic convergent evolution leaves footprints at the genome level. We used population‐genetic modelling approaches to reconstruct the demographic history and migration among sampled populations. Naturally colonized low predation populations had signatures of increased effective population size since colonization, while introduction populations had signatures of decreased effective population size. Only a small number of regions across the genome had signatures of selection in all natural populations. However, the two experimental populations shared many genomic regions under apparent selection, more than expected by chance. This overlap coupled with a population decrease since introduction provides evidence for convergent selection occurring in the two introduced populations. The lack of genetic convergence in the natural populations suggests that convergent evolution is lacking in these populations or that the effects of selection become difficult to detect after a long‐time period.  相似文献   

15.
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.Subject terms: Evolutionary genetics, Quantitative trait  相似文献   

16.
A major goal in evolutionary biology is to uncover the genetic basis of adaptation. Divergent selection exerted on ecological traits may result in adaptive population differentiation and reproductive isolation and affect differentially the level of genetic divergence along the genome. Genome‐wide scan of large sets of individuals from multiple populations is a powerful approach to identify loci or genomic regions under ecologically divergent selection. Here, we focused on the pea aphid, a species complex of divergent host races, to explore the organization of the genomic divergence associated with host plant adaptation and ecological speciation. We analysed 390 microsatellite markers located at variable distances from predicted genes in replicate samples of sympatric populations of the pea aphid collected on alfalfa, red clover and pea, which correspond to three common host‐adapted races reported in this species complex. Using a method that accounts for the hierarchical structure of our data set, we found a set of 11 outlier loci that show higher genetic differentiation between host races than expected under the null hypothesis of neutral evolution. Two of the outliers are close to olfactory receptor genes and three other nearby genes encoding salivary proteins. The remaining outliers are located in regions with genes of unknown functions, or which functions are unlikely to be involved in interactions with the host plant. This study reveals genetic signatures of divergent selection across the genome and provides an inventory of candidate genes responsible for plant specialization in the pea aphid, thereby setting the stage for future functional studies.  相似文献   

17.
Breeding indigenous African taurine cattle tolerant to trypanosomosis is a straightforward approach to control costs generated by this disease. A recent study identified quantitative trait loci (QTL) underlying trypanotolerance traits in experimental crosses between tolerant N'Dama and susceptible Boran zebu cattle. As trypanotolerance is thought to result from local adaptation of indigenous cattle breeds, we propose an alternative and complementary approach to study the genetic architecture of this trait, based on the identification of selection signatures within QTL or candidate genes. A panel of 92 microsatellite markers was genotyped on 509 cattle belonging to four West African trypanotolerant taurine breeds and 10 trypanosusceptible European or African cattle breeds. Some of these markers were located within previously identified QTL regions or candidate genes, while others were chosen in regions assumed to be neutral. A detailed analysis of the genetic structure of these different breeds was carried out to confirm a priori grouping of populations based on previous data. Tests based on the comparison of the observed heterozygosities and variances in microsatellite allelic size among trypanotolerant and trypanosusceptible breeds led to the identification of two significantly less variable microsatellite markers. BM4440, one of these two outlier loci, is located within the confidence interval of a previously described QTL underlying a trypanotolerance-related trait.
Detection of selection signatures appears to be a straightforward approach for unravelling the molecular determinism of trypanosomosis pathogenesis. We expect that a whole genome approach will help confirm these results and achieve a higher resolving power.  相似文献   

18.
As human populations dispersed throughout the world, they were subjected to new selective forces, which must have led to local adaptation via natural selection and hence altered patterns of genetic variation. Yet, there are very few examples known in which such local selection has clearly influenced human genetic variation. A potential approach for detecting local selection is to screen random loci across the genome; those loci that exhibit unusually large genetic distances between human populations are then potential markers of genomic regions under local selection. We investigated this approach by genotyping 332 short tandem repeat (STR) loci in Africans and Europeans and calculating the genetic differentiation for each locus. Patterns of genetic diversity at these loci were consistent with greater variation in Africa and with local selection operating on populations as they moved out of Africa. For 11 loci exhibiting the largest genetic differences, we genotyped an additional STR locus located nearby; the genetic distances for these nearby loci were significantly larger than average. These genomic regions therefore reproducibly exhibit larger genetic distances between populations than the "average" genomic region, consistent with local selection. Our results demonstrate that genome scans are a promising means of identifying candidate regions that have been subjected to local selection.  相似文献   

19.
T Wang  G Chen  Q Zan  C Wang  YJ Su 《PloS one》2012,7(7):e41310
Why some species become successful invaders is an important issue in invasive biology. However, limited genomic resources make it very difficult for identifying candidate genes involved in invasiveness. Mikania micrantha H.B.K. (Asteraceae), one of the world's most invasive weeds, has adapted rapidly in response to novel environments since its introduction to southern China. In its genome, we expect to find outlier loci under selection for local adaptation, critical to dissecting the molecular mechanisms of invasiveness. An explorative amplified fragment length polymorphism (AFLP) genome scan was used to detect candidate loci under selection in 28 M. micrantha populations across its entire introduced range in southern China. We also estimated population genetic parameters, bottleneck signatures, and linkage disequilibrium. In binary characters, such as presence or absence of AFLP bands, if all four character combinations are present, it is referred to as a character incompatibility. Since character incompatibility is deemed to be rare in populations with extensive asexual reproduction, a character incompatibility analysis was also performed in order to infer the predominant mating system in the introduced M. micrantha populations. Out of 483 AFLP loci examined using stringent significance criteria, 14 highly credible outlier loci were identified by Dfdist and Bayescan. Moreover, remarkable genetic variation, multiple introductions, substantial bottlenecks and character compatibility were found to occur in M. micrantha. Thus local adaptation at the genome level indeed exists in M. micrantha, and may represent a major evolutionary mechanism of successful invasion. Interactions between genetic diversity, multiple introductions, and reproductive modes contribute to increase the capacity of adaptive evolution.  相似文献   

20.
The adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.Subject terms: Population genetics, Plant sciences, Molecular evolution, Fungi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号