首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a representative member of this family, Osh4p/Kes1p, specifically facilitates the nonvesicular transfer of cholesterol and ergosterol between membranes in vitro. In addition, Osh4p transfers sterols more rapidly between membranes containing phosphoinositides (PIPs), suggesting that PIPs regulate sterol transport by ORPs. We confirmed this by showing that PM to ER sterol transport slows dramatically in mutants with conditional defects in PIP biosynthesis. Our findings argue that ORPs move sterols among cellular compartments and that sterol transport and intracellular distribution are regulated by PIPs.  相似文献   

2.
Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologs of the mammalian oxysterol-binding protein (Osh1-7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1(ts)) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well as by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in non-vesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM.  相似文献   

3.
Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Osh4p-PI(4)P complex and reveal how Osh4p selectively substitutes PI(4)P for sterol. Last, we show that Osh4p quickly exchanges DHE for PI(4)P and, thereby, can transport these two lipids between membranes along opposite routes. These results suggest a model in which Osh4p transports sterol from the ER to late compartments pinpointed by PI(4)P and, in turn, transports PI(4)P backward. Coupled to PI(4)P metabolism, this transport cycle would create sterol gradients. Because the residues that recognize PI(4)P are conserved in Osh4p homologues, other Osh/Orp are potential sterol/phosphoinositol phosphate exchangers.  相似文献   

4.
BACKGROUND: In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS: Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS: Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.  相似文献   

5.
Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergDelta mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Deltaerg6Delta and erg3Deltaerg6Delta cells exhibit a strong internalization defect of the alpha-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. The lack of phosphorylation is not due to a defect in Ste2p localization or in ligand-receptor interaction. Contrary to most known endocytic factors, sterols seem to function in internalization independently of actin. Furthermore, sterol structures are required at a postinternalization step of endocytosis. ergDelta cells were able to take up the membrane marker FM4-64, but exhibited defects in FM4-64 movement through endosomal compartments to the vacuole. Therefore, there are at least two roles for sterols in endocytosis. Based on sterol analysis, the sterol structural requirements for these two processes were different, suggesting that sterols may have distinct functions at different places in the endocytic pathway. Interestingly, sterol structures unable to support endocytosis allowed transport of the glycosylphosphatidylinositol-anchored protein Gas1p from the endoplasmic reticulum to Golgi compartment.  相似文献   

6.
ER-plasma membrane (PM) contacts are proposed to be held together by distinct families of tethering proteins, which in yeast include the VAP homologues Scs2/22, the extended-synaptotagmin homologues Tcb1/2/3, and the TMEM16 homologue Ist2. It is unclear whether these tethers act redundantly or whether individual tethers have specific functions at contacts. Here, we show that Ist2 directly recruits the phosphatidylserine (PS) transport proteins and ORP family members Osh6 and Osh7 to ER–PM contacts through a binding site located in Ist2’s disordered C-terminal tethering region. This interaction is required for phosphatidylethanolamine (PE) production by the PS decarboxylase Psd2, whereby PS transported from the ER to the PM by Osh6/7 is endocytosed to the site of Psd2 in endosomes/Golgi/vacuoles. This role for Ist2 and Osh6/7 in nonvesicular PS transport is specific, as other tethers/transport proteins do not compensate. Thus, we identify a molecular link between the ORP and TMEM16 families and a role for endocytosis of PS in PE synthesis.  相似文献   

7.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are a conserved family of soluble cytoplasmic proteins that can bind sterols, translocate between membrane compartments, and affect sterol trafficking. These properties make ORPs attractive candidates for lipid transfer proteins (LTPs) that directly mediate nonvesicular sterol transfer to the plasma membrane. To test whether yeast ORPs (the Osh proteins) are sterol LTPs, we studied endoplasmic reticulum (ER)-to-plasma membrane (PM) sterol transport in OSH deletion mutants lacking one, several, or all Osh proteins. In conditional OSH mutants, ER-PM ergosterol transport slowed ~20-fold compared with cells expressing a full complement of Osh proteins. Although this initial finding suggested that Osh proteins act as sterol LTPs, the situation is far more complex. Osh proteins have established roles in Rho small GTPase signaling. Osh proteins reinforce cell polarization and they specifically affect the localization of proteins involved in polarized cell growth such as septins, and the GTPases Cdc42p, Rho1p, and Sec4p. In addition, Osh proteins are required for a specific pathway of polarized secretion to sites of membrane growth, suggesting that this is how Osh proteins affect Cdc42p- and Rho1p-dependent polarization. Our findings suggest that Osh proteins integrate sterol trafficking and sterol-dependent cell signaling with the control of cell polarization.  相似文献   

8.
9.
Sterols are major components of the plasma membrane, but their functions in this membrane are not well understood. We isolated a mutant defective in the internalization step of endocytosis in a gene (ERG2) encoding a C-8 sterol isomerase that acts in the late part of the ergosterol biosynthetic pathway. In the absence of Erg2p, yeast cells accumulate sterols structurally different from ergosterol, which is the major sterol in wild-type yeast. To investigate the structural requirements of ergosterol for endocytosis in more detail, several erg mutants (erg2Delta, erg6Delta, and erg2Deltaerg6Delta) were made. Analysis of fluid phase and receptor-mediated endocytosis indicates that changes in the sterol composition lead to a defect in the internalization step. Vesicle formation and fusion along the secretory pathway were not strongly affected in the ergDelta mutants. The severity of the endocytic defect correlates with changes in sterol structure and with the abundance of specific sterols in the ergDelta mutants. Desaturation of the B ring of the sterol molecules is important for the internalization step. A single desaturation at C-8,9 was not sufficient to support internalization at 37 degrees C whereas two double bonds, either at C-5,6 and C-7,8 or at C-5,6 and C-8,9, allowed internalization.  相似文献   

10.
The polarization of yeast and animal cells relies on membrane sterols for polar targeting of proteins to the plasma membrane, their polar endocytic recycling and restricted lateral diffusion. However, little is known about sterol function in plant-cell polarity. Directional root growth along the gravity vector requires polar transport of the plant hormone auxin. In Arabidopsis, asymmetric plasma membrane localization of the PIN-FORMED2 (PIN2) auxin transporter directs root gravitropism. Although the composition of membrane sterols influences gravitropism and localization of two other PIN proteins, it remains unknown how sterols contribute mechanistically to PIN polarity. Here, we show that correct membrane sterol composition is essential for the acquisition of PIN2 polarity. Polar PIN2 localization is defective in the sterol-biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) which displays altered sterol composition, PIN2 endocytosis, and root gravitropism. At the end of cytokinesis, PIN2 localizes initially to both newly formed membranes but subsequently disappears from one. By contrast, PIN2 frequently remains at both daughter membranes in endocytosis-defective cpi1-1 cells. Hence, sterol composition affects post-cytokinetic acquisition of PIN2 polarity by endocytosis, suggesting a mechanism for sterol action on establishment of asymmetric protein localization.  相似文献   

11.
12.
Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.  相似文献   

13.
Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid‐synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)—ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N‐methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM–ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.  相似文献   

14.
15.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   

16.
Oxysterol binding protein-related proteins, including the yeast proteins encoded by the OSH gene family (OSH1-OSH7), are implicated in the non-vesicular transfer of sterols between intracellular membranes and the plasma membrane. In light of recent studies, we revisited the proposal that Osh proteins are sterol transfer proteins and present new models consistent with known Osh protein functions. These models focus on the role of Osh proteins as sterol-dependent regulators of phosphoinositide and sphingolipid pathways. In contrast to their posited role as non-vesicular sterol transfer proteins, we propose that Osh proteins coordinate lipid signaling and membrane reorganization with the assembly of tethering complexes to promote molecular exchanges at membrane contact sites.  相似文献   

17.
Schneiter R 《Biochimie》2007,89(2):255-259
Eukaryotic cells synthesize sterols in the endoplasmatic reticulum (ER) from where it needs to be efficiently transported to the plasma membrane, which harbors approximately 90% of the free sterol pool of the cell. Sterols that are being taken up from the environment, on the other hand, are transported back from the plasma membrane to the ER, where the free sterols are esterified to steryl esters. The molecular mechanisms that govern this bidirectional movement of sterols between the ER and the plasma membrane of eukaryotic cells are only poorly understood. Proper control of this transport is important for normal cell function and development as indicated by fatal human pathologies such as Niemann Pick type C disease and atherosclerosis, which are characterized by an over-accumulation of free sterols within endosomal membranes and the ER, respectively. Recently, a number of complementary approaches using Saccharomyces cerevisiae as a model organism lead to a more precise characterization of the pathways that control the subcellular transport of sterols and led to the identification of components that directly or indirectly affect sterol uptake at the plasma membrane and its transport back to the ER. A genetic approach that is based on the fact that yeast is a facultative anaerobic organism, which becomes auxotrophic for sterols in the absence of oxygen, resulted in the identification of 17 genes that are required for efficient uptake and/or transport of sterols. Unexpectedly, many of these genes are required for mitochondrial functions. A possible connection between mitochondrial biogenesis and sterol biosynthesis and uptake will be discussed in light of the fact that cholesterol transport into the inner membranes of mitochondria is a well established sterol transport route in vertebrates, where it is required to convert cholesterol into pregnenolone, the precursor of steroids.  相似文献   

18.
Little is known about the mechanisms of intracellular sterol transport or how cells maintain the high sterol concentration of the plasma membrane (PM). Here we demonstrate that two inducible ATP-binding cassette (ABC) transporters (Aus1p and Pdr11p) mediate nonvesicular movement of PM sterol to the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. This transport facilitates exogenous sterol uptake, which we find requires steryl ester synthesis in the ER. Surprisingly, while expression of Aus1p and Pdr11p significantly increases sterol movement from PM to ER, it does not alter intracellular sterol distribution. Thus, ER sterol is likely rapidly returned to the PM when it is not esterified in the ER. We show that the propensity of PM sterols to be moved to the ER is largely determined by their affinity for sterol sphingolipid-enriched microdomains (rafts). Our findings suggest that raft association is a primary determinant of sterol accumulation in the PM and that Aus1p and Pdr11p facilitate sterol uptake by increasing the cycling of sterol between the PM and ER.  相似文献   

19.
ATP-binding cassette transporters ABCG5 (G5) and ABCG8 (G8) form a heterodimer that transports cholesterol and plant sterols from hepatocytes into bile. Mutations that inactivate G5 or G8 cause hypercholesterolemia and premature atherosclerosis. We showed previously that the two nucleotide-binding domains (NBDs) in the heterodimer are not functionally equivalent; sterol transport is abolished by mutations in the consensus residues of NBD2 but not of NBD1. Here, we examined the structural requirements of NBD1 for sterol transport. Substitutions of the D-loop aspartate and Q-loop glutamine in either NBD did not impair sterol transport. The H-loop histidine of NBD2 (but not NBD1) was required for sterol transport. Exchange of the signature motifs between the NBDs did not interfere with sterol transport, whereas swapping the Walker A, Walker B, and signature motifs together resulted in failure to transport sterols. Selected substitutions within NBD1 altered substrate specificity: transport of plant sterols by the heterodimer was preserved, whereas transport of cholesterol was abolished. In summary, these data indicate that NBD1, although not required for ATP hydrolysis, is essential for normal function of G5G8 in sterol transport. Both the position and structural integrity of NBD2 are essential for sterol transport activity.  相似文献   

20.
Oxysterol-binding protein (OSBP)-related protein Kes1/ Osh4p is implicated in nonvesicular sterol transfer between membranes in Saccharomyces cerevisiae. However, we found that Osh4p associated with exocytic vesicles that move from the mother cell into the bud, where Osh4p facilitated vesicle docking by the exocyst tethering complex at sites of polarized growth on the plasma membrane. Osh4p formed complexes with the small GTPases Cdc42p, Rho1p and Sec4p, and the exocyst complex subunit Sec6p, which was also required for Osh4p association with vesicles. Although Osh4p directly affected polarized exocytosis, its role in sterol trafficking was less clear. Contrary to what is predicted for a sterol-transfer protein, inhibition of sterol binding by the Osh4p Y97F mutation did not cause its inactivation. Rather, OSH4(Y97F) is a gain-of-function mutation that causes dominant lethality. We propose that in response to sterol binding and release Osh4p promotes efficient exocytosis through the co-ordinate regulation of Sac1p, a phosphoinositide 4-phosphate (PI4P) phosphatase, and the exocyst complex. These results support a model in which Osh4p acts as a sterol-dependent regulator of polarized vesicle transport, as opposed to being a sterol-transfer protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号