首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abscisic acid (ABA) applied exogenously at 100 μM prior to and during the salt-stress period induced salt tolerance in both the salt-susceptible (LPT123) and the genetically related salt-resistant (LPT123-TC171) rice lines, enhanced the survival rate by 20%, and triggered proline (Pro) accumulation earlier than that by salt-stress alone, supporting a role for Pro as an osmoprotectant. In both rice lines, salt-stress induced OsP5CS1 gene expression, suggesting that proline accumulation occurs via OsP5CS1 gene expression during salt stress. An increase in the endogenous ABA level was required for the induction of OsP5CS1 gene expression by salt stress. Under salt stress, topical ABA application-induced OsP5CS1 gene expression only in the salt-resistant line but up-regulated OsP5CR gene expression in both rice lines, suggesting that the increased proline accumulation and salt resistance induced by topical ABA application may result from the up-regulation of OsP5CR and not, directly at least, from OsP5CS1. Moreover, exogenous ABA application up-regulates OsCam1-1 (the salt-stress-responsive calmodulin) gene expression, and calmodulin was shown to play a role in the signal transduction cascade in proline accumulation during salt stress. These data suggest the role of the calmodulin signaling cascade and the induction of OsP5CR gene expression in proline accumulation by exogenous ABA application.  相似文献   

2.
The regulation of proline biosynthesis has been examined in callus and cell cultures of the indica-type rice cultivar Khao Dawk Mali 105 (KDML105) in response to a saline treatment (250 mM NaCl) in terms of the expression of Δ1-pyrroline-5-carboxylate reductase (OsP5CR) and members of the gene family encoding the rate-determining enzyme, Δ1-pyrroline-5-carboxylate synthase (designated OsP5CS1 and OsP5CS2). Using friable callus, growth was retarded by treatment with 250 mM NaCl within 4 days, with a significant increase in the expression of OsP5CS2 by 24 h, and a less marked induction in OsP5CS1 and OsP5CR over the same time-course. Cell suspension cultures derived from the friable callus were also treated with 250 mM NaCl and an induction in OsP5CS2 was again observed, although this was not as marked as in the friable callus, and there was no significant change in OsP5CS1 and OsP5CR expression. This is the first report that details the expression of OsP5CS1 and OsP5CS2 in tissue culture and the results show that, in common with whole plants, OsP5CS2 displays a primacy of response to saline treatment. However, this response may require a community of communicating cells, as occurs in callus tissue, rather than cell suspension cultures. This difference has implications both in terms of the biology of signaling in response to increased salinity and in the use of tissue culture to screen for saline-tolerant germplasm.  相似文献   

3.
4.
5.
Lipid bodies store oils in the form of triacylglycerols. Oleosin, caleosin and steroleosin are unique proteins localized on the surface of lipid bodies in seed plants. This study has identified genes encoding lipid body proteins oleosin, caleosin and steroleosin in the genomes of five plants: Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Selaginella moellendorffii and Physcomitrella patens. The protein sequence alignment indicated that each oleosin protein contains a highly-conserved proline knot motif, and proline knob motif is well conserved in steroleosin proteins, while caleosin proteins possess the Dx[D/N]xDG-containing calcium-binding motifs. The identification of motifs (proline knot and knob) and conserved amino acids at active site was further supported by the sequence logos. The phylogenetic analysis revealed the presence of magnoliophyte-and bryophyte-specific subgroups. We analyzed the public microarray data for expression of oleosin, caleosin and steroleosin in Arabidopsis and rice during the vegetative and reproductive stages, or under abiotic stresses. Our results indicated that genes encoding oleosin, caleosin and steroleosin proteins were expressed predominantly in plant seeds. This work may facilitate better understanding of the members of lipid-body-membrane proteins in diverse organisms and their gene expression in model plants Arabidopsis and rice.  相似文献   

6.
A cDNA for 1-pyrroline-5-carboxylate (P5C) synthetase (cOsP5CS), an enzyme involved in the biosynthesis of proline, was isolated and characterized from a cDNA library prepared from 14-day-old seedlings of Oryza sativa cv. Akibare. The deduced amino acid sequence of the P5CS protein (OsP5CS) from O. sativa exhibited 74.2% and 75.5% homology to that of the P5CS from Arabidopsis thaliana and Vigna aconitifolia, respectively. Northern blot analysis revealed that the gene for P5CS (OsP5CS) was induced by high salt, dehydration, treatment of ABA and cold treatment, while it was not induced by heat treatment. Simultaneously, accumulation of proline was observed as a result of high salt treatment in O. sativa. Moreover, the levels of expression of OsP5CS mRNA and content of proline under salt stress condition were compared between a salt-tolerant cultivar, Dee-gee-woo-gen (DGWG) and a salt-sensitive breeding line, IR28. It was observed that the expression of the P5CS gene and the accumulation of proline in DGWG steadily increased, whereas those in IR28 increased slightly.  相似文献   

7.
Pyrroline-5-carboxylate reductase (P5CR) lies at the converging point of the glutamate and ornithine pathways and is the last and critical enzyme in proline biosynthesis. In the present study, a P5CR gene, named IbP5CR, was isolated from salt-tolerant sweetpotato line ND98. Expression of IbP5CR was up-regulated in sweetpotato under salt stress. The IbP5CR-overexpressing sweetpotato (cv. Kokei No. 14) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content and superoxide dismutase and photosynthetic activities were significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbP5CR up-regulated pyrroline-5-carboxylate synthase gene and down-regulated proline dehydrogenase and P5C dehydrogenase genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that overexpression of IbP5CR increases proline accumulation, which enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. This study indicates that IbP5CR gene has the potential to be used for improving salt tolerance of plants.  相似文献   

8.
Ethylene response factor (ERF) proteins regulate a variety of stress responses in plant. JERF1, a tomato ERF protein, can be induced by abscisic acid (ABA). Overexpression of JERF1 enhanced the tolerance of transgenic tobacco to high salt concentration, osmotic stress, and low temperature by regulating the expression of stress-responsive genes by binding to DRE/CRT and GCC-box cis-elements. In this research, we further report that overexpression of JERF1 significantly enhanced drought tolerance of transgenic rice. The overexpression activated the expression of stress-responsive genes and increased the synthesis of the osmolyte proline by regulating the expression of OsP5CS, encoding the proline biosynthesis key enzyme deltal-pyrroline-5-carboxylate synthetase. JERF1 also activated the expression of two ABA biosynthesis key enzyme genes, OsABA2 and Os03g0810800, and increased the synthesis of ABA in rice. Analysis of cis-elements of JERF1-targeted genes pointed to the existence of DRE/CRT and/or GCC box in their promoters, indicating that JERF1 could activate the expression of related genes in rice by binding to these cis-elements. Unlike some other ERF proteins, constructive overexpression of JERF1 did not change the growth and development of transgenic rice, which makes JEFR1 a potentially useful source in breeding for greater tolerance to abiotic stress.  相似文献   

9.
10.
11.
Proline accumulates in environmentally stressed plant cells including those of legume roots and nodules, but how its level is regulated is poorly understood. Δ1-Pyrroline-5-carboxylate synthetase (P5CS), the committed-step enzyme of proline biosynthesis, is encoded by two duplicated genes in many plants. Here, we isolated MtP5CS3, a third gene, from Medicago truncatula, whose predicted polypeptide sequence is highly similar to those of previously isolated MtP5CS1 and MtP5CS2 except an extra amino-terminal segment. MtP5CS3 was strongly expressed under salinity and drought in shoots and nodulating roots, while MtP5CS1 was constitutive and MtP5CS2 induced by abscisic acid. Under salinity, MtP5CS3 promoter was more active than those of MtP5CS1 and MtP5CS2, as shown by GUS fusions. Translationally fused MtP5CS1-GFP was localized in the cytoplasm, whereas significant proportions of MtP5CS2-GFP and MtP5CS3-GFP were co-localized with rubisco small subunit protein-fused RFP in transformed hairy root cells. Under salinity, RNA silencing of MtP5CS1 or MtP5CS2 strongly induced MtP5CS3 expression, while that of MtP5CS3 decreased free proline content and nodule number. Consistently, Mtp5cs3, a loss-of-function mutant, accumulated much less proline, formed fewer nodules, and fixed nitrogen significantly less efficiently than the wild type under salinity. Thus, MtP5CS3 plays a critical role in regulating stress-induced proline accumulation during symbiotic nitrogen fixation.  相似文献   

12.
13.
Proline accumulations in abiotically stressed plants is generally considered to benefit their stress tolerance. The Δ1-Pyrroline-5-carboxylate synthetase (P5CS) gene family, which encodes the rate-limiting enzyme in proline biosynthesis pathway, usually contains two duplicated genes in most plants. However, three P5CS genes including LrP5CS1, LrP5CS2 as well as a third one, LrP5CS3, were isolated from Lilium regale. LrP5CS3 is highly identical to LrP5CS1 in amino acid sequences, indicating they could come from a paralogous duplication. The phylogenetic tree suggested that the duplication of LrP5CS occurred independently after the divergence of Liliales and commelinoids. The expression of LrP5CS1 was strongly induced in leaves and roots both under drought and salinity, while that of LrP5CS3 was upregulated more moderately. LrP5CS2 stayed almost constitutive under stress. LrP5CS1 exhibited the highest activity after expressed in E. coli. Overexpression of LrP5CS genes conferred enhanced osmotic, drought and salt tolerance on transgenic Arabidopsis without negative effects in unstressed condition. Under salt stress, lines LrP5CS2 accumulated fewer proline than others, and lines LrP5CS1 grew better in root elongation. The roots of lines LrP5CS3 grew better than all others under unstressed condition and osmotic stress. Our study suggests that the three LrP5CS genes play distinct roles respectively in proline accumulation and abiotic stress tolerance.  相似文献   

14.
The objective of the present study was to assess the role of salinity-induced expression of pyrrolline 5-carboxylate synthetase (P5CS), P5CS activity, and proline accumulation on salinity tolerance in Brassica genotypes. A pot culture experiment was conducted with four Brassica genotypes viz. CS 52, CS 54, Varuna, (B. juncea) and T 9 (B. campestris) under control and two salinity levels, i.e., 1.65, 4.50 and 6.76?dS?m?1. Proline contents increased with increasing levels of salinity, and the highest content were recorded at post-flowering stage in CS 52 and CS 54. Activity of P5CS recorded at flowering stage was highest at higher level of salinity, with CS 52 and CS 54 recording highest activity. Gene expression of P5CS, which regulates the synthesis of proline, was higher in CS 52 and CS 54 under salt stress than Varuna and T 9. Comparison of partial nucleotide as well as amino acid sequence showed conserved domains, and inter and intra generic relatedness of these genes. The study suggests that salinity-induced expression of P5CS, pyrrolline-phosphate synthetase activity and proline accumulation may serve as one of the mechanism of salinity stress tolerance in Brassica genotypes.  相似文献   

15.
Proline plays a significant role in plant resistance to abiotic stresses, and its level is determined by a combination of synthesis, catabolism and transport. The primary proteins involved are Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PDH) and proline transporter (ProT). To utilise proline metabolism to improve the stress resistance of Chrysanthemum × morifolium, we isolated two P5CS-homologous genes (ClP5CS1 and ClP5CS2), one PDH gene (ClPDH) and four ProT-homologous genes (ClProT1-4) (GenBANK accession numbers: KF743136–KF743142) from Chrysanthemum lavandulifolium, which is closely related to chrysanthemums and exhibits strong resistance to stresses. Expression analysis of these genes in different organs and under various stresses indicated that ClP5CSs showed substantial constitutive expression, while ClPDH was only strongly expressed in the capitulum and was inhibited under most stresses. The expression patterns of four ClProT genes presented characteristics of organ specificity and disparity under stresses. Above all, the expression of ClProT2 was restricted to above-ground organs, especially strong in the capitulum and could be obviously induced by various stress conditions. Promoters of ClPDH and ClProTs contained many cis-acting regulatory elements involved in stress responses and plant growth and development. High levels of free proline were found in flower buds, the capitulum under the non-stress condition and later periods of stress conditions except cold treatment. Interestingly, organ specificity and disparity also exist in the level of free proline under different stress conditions. Our study indicates that ClProTs play significant roles in proline accumulation and stress responses, and that ClProT2 could be used to genetically modify the stress resistance of chrysanthemums. In addition, proline metabolism might be closely related to plant flowering and floral development.  相似文献   

16.
17.
We reported previously that the plant oncogene rolD anticipates and stimulates flowering in Nicotiana tabacum, and encodes ornithine cyclodeaminase, an enzyme catalysing the conversion of ornithine to proline. To investigate on the possible role of proline in flowering, we altered the expression of AtP5CS1, encoding the rate-limiting enzyme of proline biosynthesis in plants. Accordingly we characterized a mutant line containing a T-DNA insertion into AtP5CS1 and introduced in Arabidopsis thaliana AtP5CS1 under the control of the CaMV35S promoter. As expected homozygous p5cs1 mutants behaved as late flowering. In addition p5cs1 mutants exhibited a shorter size and contained lower levels of proline, compared to wild type. 35S-P5CS1 plants, manifested, early in development, overexpression of P5CS1 and accumulation of proline, leading to early flowering, both under long- and short-day conditions. Later in development, down-regulation of P5CS1 occurred in 35S-P5CS1 leaves, leading to proline reduction, and, in turn, impaired bolting and stunted growth. Salt-stress restored expression of P5CS1 and proline accumulation in P5CS1-transformed plants, as well as rescuing growth. Our data suggest that proline plays a key role in flower transition, bolting and coflorescence formation.  相似文献   

18.
19.
目的:为进一步研究枸杞抗逆境胁迫的机制,并为转基因育种,提供理论依据。提高农作物的抗逆性提供优质的基因资源。方法:提选取盐胁迫后脯氨酸含量变化较大的耐盐植物枸杞为材料,用1.5%NaCl处理后,提取枸杞叶片总RNA,利用 RT-PCR 及3' RACE方法克隆获得吡咯啉-5-羧酸合成酶(delta 1-pyrroline-5-carboxylate synthetase,P5CS)基因的全长cDNA,命名为LmP5CS,构建pH7m24GW,3rc-LmP5CS植物表达载体。结果:LmP5CS基因的ORF长2 154 bp,编码1个等电点为6.07、分子量为 77.5kDa、由717个氨基酸组成的蛋白。枸杞在200 mmol/L NaCl 盐胁迫下, LmP5CS基因表达量随处理时间,有先升高后降低的趋势,9h基因表达量最高,脯氨酸含量变化与之一致。结论:LmP5CS基因在盐胁迫下脯氨酸含量的变化中起关键作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号