首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.  相似文献   

3.
ABSTRACT

This article synthesizes foundational knowledge from multiple scientific disciplines regarding how humans develop in context. Major constructs that define human development are integrated into a developmental system framework, this includes—epigenetics, neural malleability and plasticity, integrated complex skill development and learning, human variability, relationships and attachment, self-regulation, science of learning, and dynamics of stress, adversity and resilience. Specific attention is given to relational patterns, attunement, cognitive flexibility, executive function, working memory, sociocultural context, constructive development, self-organization, dynamic skill development, neural integration, relational pattern making, and adverse childhood experiences. A companion article focuses on individual-context relations, including the role of human relationships as key drivers of development, how social and cultural contexts support and/or undermine individual development, and the dynamic, idiographic developmental pathways that result from mutually influential individual-context relations across the life span. An understanding of the holistic, self-constructive character of development and interconnectedness between individuals and their physical, social, and cultural contexts offers a transformational opportunity to study and influence the children’s trajectories. Woven throughout is the convergence of the science of learning – constructive developmental web, foundational skills, mindsets (sense of belonging, self-efficacy, and growth mindset), prior knowledge and experience, motivational systems (intrinsic motivation, achievement motivation, and the Belief-Control-Expectancy Framework), metacognition, conditions for learning , cultural responsiveness and competence, and instructional and curricular design- and its importance in supporting in integrative framework for children’s development. This scientific understanding of development opens pathways for new, creative approaches that have the potential to solve seemingly intractable learning and social problems.  相似文献   

4.
Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.  相似文献   

5.
Glutamine (Gln), glutamate (Glu) and gamma-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocytic-derived glutamine is the precursor of the two most important neurotransmitters: glutamate, an excitatory neurotransmitter, and GABA, an inhibitory neurotransmitter. In addition to their roles in neurotransmission these neurotransmitters act as alternative metabolic substrates that enable metabolic coupling between astrocytes and neurons. The relationships between Gln, Glu and GABA were studied under lead (Pb) toxicity conditions using synaptosomal fractions obtained from adult rat brains to investigate the cause of Pb neurotoxicity-induced seizures. We have found that diminished transport of [(14)C]GABA occurs after Pb treatment. Both uptake and depolarization-evoked release decrease by 40% and 30%, respectively, relative to controls. Lower expression of glutamate decarboxylase (GAD), the GABA synthesizing enzyme, is also observed. In contrast to impaired synaptosomal GABA function, the GABA transporter GAT-1 protein is overexpressed (possibly as a compensative mechanism). Furthermore, similar decreases in synaptosomal uptake of radioactive glutamine and glutamate are observed. However, the K(+)-evoked release of Glu increases by 20% over control values and the quantity of neuronal EAAC1 transporter for glutamate reaches remarkably higher levels after Pb treatment. In addition, Pb induces decreased activity of phosphate-activated glutaminase (PAG), which plays a role in glutamate metabolism. Most noteworthy is that the overexpression and reversed action of the EAAC1 transporter may be the cause of the elevated extracellular glutamate levels. In addition to the impairment of synaptosomal processes of glutamatergic and GABAergic transport, the results indicate perturbed relationships between Gln, Glu and GABA that may be the cause of altered neuronal-astrocytic interactions under conditions of Pb neurotoxicity.  相似文献   

6.
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.To understand how neurons communicate with each other requires a fundamental understanding of neurotransmitter receptor structure and function. Neurotransmitter-gated ion channels, also known as ionotropic receptors, are responsible for fast synaptic transmission. They decode chemical signals into electrical responses, thereby transmitting information from one neuron to another. Their suitability for this important task relies on their ability to respond very rapidly to the transient release of neurotransmitter to affect cell excitability.In the central nervous system (CNS), fast synaptic transmission results in two main effects: neuronal excitation and inhibition. For excitation, the principal neurotransmitter involved is glutamate, which interacts with ionotropic (integral ion channel) and metabotropic (second-messenger signaling) receptors. The ionotropic glutamate receptors are permeable to cations, which directly cause excitation. Acetylcholine and serotonin can also activate specific cation-selective ionotropic receptors to affect neuronal excitation. For controlling cell excitability, inhibition is important, and this is mediated by the neurotransmitters GABA and glycine, causing an increased flux of anions. GABA predominates as the major inhibitory transmitter throughout the CNS, whereas glycine is of greater importance in the spinal cord and brainstem. They both activate specific receptors—for GABA, there are ionotropic and metabotropic receptors, whereas for glycine, only ionotropic receptors are known to date.Together with acetylcholine- and serotonin-gated channels, GABA and glycine ionotropic receptors form the superfamily of Cys-loop receptors, which differs in many aspects from the superfamily of ionotropic glutamate receptors. Over the last two decades, our knowledge of the structure and function of ionotropic receptors has grown rapidly. In this article, we summarize our current understanding of the molecular operation of these receptors and how we can now begin to interpret the role of receptor structure in agonist binding, channel activation, and allosteric modulation of Cys-loop and glutamate receptor families. Further details on the regulation and trafficking of neurotransmitter receptors in synaptic structure and plasticity can be found in accompanying articles.  相似文献   

7.
Previous findings have demonstrated that chronotype (morningness/intermediate/eveningness) is correlated with cognitive functions, that is, people show higher mental performance when they do a test at their preferred time of day. Empirical studies found a relationship between morningness and higher learning achievement at school and university. However, only a few of them controlled for other moderating and mediating variables. In this study, we included chronotype, gender, conscientiousness and test anxiety in a structural equation model (SEM) with grade point average (GPA) as academic achievement outcome. Participants were 158 high school students and results revealed that boys and girls differed in GPA and test anxiety significantly, with girls reporting better grades and higher test anxiety. Moreover, there was a positive correlation between conscientiousness and GPA (r = 0.17) and morningness (r = 0.29), respectively, and a negative correlation between conscientiousness and test anxiety (r = –0.22). The SEM demonstrated that gender was the strongest predictor of academic achievement. Lower test anxiety predicted higher GPA in girls but not in boys. Additionally, chronotype as moderator revealed a significant association between gender and GPA for evening types and intermediate types, while intermediate types showed a significant relationship between test anxiety and GPA. Our results suggest that gender is an essential predictor of academic achievement even stronger than low or absent test anxiety. Future studies are needed to explore how gender and chronotype act together in a longitudinal panel design and how chronotype is mediated by conscientiousness in the prediction of academic achievement.  相似文献   

8.
Several amino acids may function as neurotransmitters in the nervous system. The potential role of glutamate (Glu) and aspartate in excitatory responses was demonstrated and it was established that GABA and glycine act as inhibitory agents. The present study aimed at investigating the availability of Glu and GABA in certain feline sensory ganglia, i.e. the trigeminal (TrG), nodose and dorsal root ganglia (DRG). A significant part of the neurons were GABA-positive (19.5% to 23.5%). These were large-sized neurons as well as small- to medium-sized ones. The intensity of immunostaining varied from weak to strong. GABA-containing neuronal fibres were seen in the neuropil and some of them surrounded unstained ganglionic cells. The Glu-immunoreactive (IR) neuronal perikarya in all the investigated ganglia were 63.6% to 66.4%. The majority of positive cells were small- to medium-sized, but large primary sensory neurons were also seen. There was no difference between the intensity of the reaction in the primary sensory and small neurons. Glu-IR neuronal fibres were seen in close apposition to immunopositive as well as immunonegative neurons. In conclusion, in the TrG, nodose and DRG, GABA and glutamate are involved in neurotransmission. There is a significant number of GABAergic neurons in the investigated sensory ganglia of the cat. The difference in the expression of these amino acids suggests that they can act not only as neurotransmitters but also as modulators of sensory information.  相似文献   

9.
P M Burger  J Hell  E Mehl  C Krasel  F Lottspeich  R Jahn 《Neuron》1991,7(2):287-293
gamma-Aminobutyric acid (GABA) and glycine are major inhibitory neurotransmitters that are released from nerve terminals by exocytosis via synaptic vesicles. Here we report that synaptic vesicles immunoisolated from rat cerebral cortex contain high amounts of GABA in addition to glutamate. Synaptic vesicles from the rat medulla oblongata also contain glycine and exhibit a higher GABA and a lower glutamate concentration than cortical vesicles. No other amino acids were detected. In addition, the uptake activities of synaptic vesicles for GABA and glycine were compared. Both were very similar with respect to substrate affinity and specificity, bioenergetic properties, and regional distribution. We conclude that GABA, glycine, and glutamate are the only major amino acid neurotransmitters stored in synaptic vesicles and that GABA and glycine are transported by similar, if not identical, transporters.  相似文献   

10.
Meza G 《Neurochemical research》2008,33(8):1634-1642
GABA and glutamate have been postulated as afferent neurotransmitters at the sensory periphery inner ear vestibule in vertebrates. GABA has fulfilled the main criteria to act as afferent neurotransmitter but may also be a putative efferent neurotransmitter, mainly due to cellular localization of its synthesizing enzyme glutamate decarboxylase derived from biochemical, immunocytochemical, in situ hybridization and molecular biological techniques, whereas glutamate afferent neurotransmission role is supported mainly by pharmacological evidences. GABA and Glu could also act as afferent co-neurotransmitters based upon immunocytochemical techniques. This multiplicity was not considered earlier and postulates a peripheral modulation of afferent information being sent to higher vestibular centers. In order to make a definitive cellular assignation to these putative neurotransmitters it is necessary to have evidences derived from immunocytochemical and pharmacological experiments in which both substances are tested simultaneously. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

11.
Sea anemones have a structurally simple nervous system that controls behaviors like feeding, locomotion, aggression, and defense. Specific chemical and tactile stimuli are transduced by ectodermal sensory cells and transmitted via a neural network to cnidocytes and epithelio‐muscular cells, but the nature of the neurotransmitters operating in these processes is still under discussion. Previous studies demonstrated an important role of peptidergic transmission in cnidarians, but during the last decade the contribution of conventional neurotransmitters became increasingly evident. Here, we used immunohistochemistry on light and electron microscopical preparations to investigate the localization of glutamate and GABA in tentacle cross‐sections of the sea anemone Phymactis papillosa. Our results demonstrate strong glutamate immunoreactivity in the nerve plexus, while GABA labeling was most prominent in the underlying epithelio‐muscular layer. Immunoreactivity for both molecules was also found in glandular epithelial cells, and putative sensory cells were GABA positive. Under electron microscopy, both glutamate and GABA immunogold labeling was found in putative neural processes within the neural plexus. These data support a function of glutamate and GABA as signaling molecules in the nervous system of sea anemones. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Brain microdialysis has become a frequently used method to study the extracellular concentrations of neurotransmitters in specific areas of the brain. For years, and this is still the case today, dialysate concentrations and hence extracellular concentrations of neurotransmitters have been interpreted as a direct index of the neuronal release of these specific neurotransmitter systems. Although this seems to be the case for neurotransmitters such as dopamine, serotonin and acetylcholine, the extracellular concentrations of glutamate and GABA do not provide a reliable index of their synaptic exocytotic release. However, many microdialysis studies show changes in extracellular concentrations of glutamate and GABA under specific pharmacological and behavioural stimuli that could be interpreted as a consequence of the activation of specific neurochemical circuits. Despite this, we still do not know the origin and physiological significance of these changes of glutamate and GABA in the extracellular space. Here we propose that the changes in dialysate concentrations of these two neurotransmitters found under specific treatments could be an expression of the activity of the neurone-astrocyte unit in specific circuits of the brain. It is further proposed that dialysate changes of glutamate and GABA could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain. This hypothesis is based firstly on the assumption that the activity of neurones is functionally linked to the activity of astrocytes, which can release glutamate and GABA to the extracellular space; secondly, on the existence of extrasynaptic glutamate and GABA receptors with functional properties different from those of GABA receptors located at the synapse; and thirdly, on the experimental evidence reporting specific electrophysiological and neurochemical effects of glutamate and GABA when their levels are increased in the extracellular space. According to this concept, glutamate and GABA, once released into the extracellular compartment, could diffuse and have long-lasting effects modulating glutamatergic and/or GABAergic neurone-astrocytic networks and their interactions with other neurotransmitter neurone networks in the same areas of the brain.  相似文献   

13.
神经递质在鸣禽脑中不仅是神经元间信号传递中介物质,还有资料表明它们通过在习鸣敏感期影响发声控制团间的突触联系的形成和突触可塑性,从而对鸣转类型的确定和巩固起重要作用,本文着重介绍了鸣禽发声控制核团内神经递质的分布及变化情况,并就神经递质在发声学习中的作用进行了探讨。  相似文献   

14.
A rat model of a hyperkinetic disorder was used to investigate the mechanisms underlying motor hyperactivity. Rats received an intracisternal injection of 6-hydroxydopamine on post-natal day 5. At 4 weeks of age, the animals showed significant motor hyperactivity during the dark phase, which was attenuated by methamphetamine injection. Gene expression profiling was carried out in the striatum and midbrain using a DNA macroarray. In the striatum at 4 weeks, there was increased gene expression of the NMDA receptor 1 and tachykinins, and decreased expression of a GABA transporter. At 8 weeks, expression of the NMDA receptor 1 in the striatum was attenuated, with enhanced expression of the glial glutamate/aspartate transporter. In the midbrain, a number of genes, including the GABA transporter gene, showed decreased expression at 4 weeks. At 8 weeks, gene expression was augmented for the dopamine transporter, D4 receptor, and several genes encoding peptides, such as tachykinins and their receptors. These results suggest that in the striatum the neurotransmitters glutamate, GABA and tachykinin may play crucial roles in motor hyperactivity during the juvenile period. Several classes of neurotransmitters, including dopamine and peptides, may be involved in compensatory mechanisms during early adulthood. These data may prompt further neurochemical investigations in hyperkinetic disorders.  相似文献   

15.
-Aminobutyric acid (GABA) has been implicated in the development of hypertension and in the regulation of blood pressure. The spontaneously hypertensive rat (SHR) offers an opportunity to explore the role of central GABA and other neurotransmitters in the genesis of high blood pressure. The receptor binding of [3H]GABA, [3H]flunitrazepam, and [3H]glutamate to synaptic membranes from the cerebral cortex and cerebellum of SHR rats were measured in animals of various ages. No significant differences between the SHR and a normotensive control strain of rats were found for any of the assays. The results indicate that in this model of hypertension, neither GABA nor glutamate function are involved, at least not in the cerebral cortex or cerebellum.  相似文献   

16.
The fate of adult-generated neurons in dentate gyrus is mainly determined early, before they receive synapses. In developing brain, classical neurotransmitters such as GABA and glutamate exert trophic effects before synaptogenesis. In order for this to occur in adult brain as well, immature non-contacted cells must express functional receptors to GABA and glutamate. In this investigation, patch-clamp recordings were used in adult rat dentate gyrus slices to assess the presence and analyze the characteristics of GABA- and glutamate-evoked currents in highly immature, synaptically-silent granule cells. Whole-cell patch-clamp recordings showed that all the analyzed cells responded to puff application of GABA and most of them responded to glutamate. Currents evoked by GABA were mediated exclusively by GABAA receptors and those elicited by glutamate were mediated by NMDA and AMPA/Kainate receptors. GABAA receptor-mediated currents were reduced by furosemide, which suggests that synaptically-silent immature neurons express high-affinity, alpha4-subunit-containing GABAA receptors. Gramicidin-perforated-patch recordings showed that GABAA receptor-mediated currents exerted a depolarizing effect due to high intracellular chloride concentration. Synaptically-silent immature cells shared morphological and electrophysiological properties with GFP-expressing, 7-day-old adult-generated granule layer cells, indicating that they could be in the first week of life, the period of maximal newborn cell death. Moreover, the presence of functional GABA and glutamate receptors was confirmed in these GFP-expressing cells. Present findings are mostly consistent with previous data obtained in female mice undergoing spontaneous activity and in transgenic mice, except for some inconsistencies about the presence of functional glutamatergic receptors. We speculate that adult-generated, non-contacted granule cells may be able to sense activity-related variations of GABA and glutamate extracellular levels. This condition is necessary, even if not sufficient, for these neurotransmitters to have a direct role in addressing cell survival.  相似文献   

17.
The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function.  相似文献   

18.
Glial cells of the central nervous system express receptors for the main inhibitory and excitatory neurotransmitters, GABA and glutamate. The glial GABA and glutamate receptors share many properties with the neuronal GABAA and kainate/quisqualate receptors, but are molecularly and, in some aspects, pharmacologically distinct from their neuronal counterparts. The functional role of these receptors is as yet speculative: They have been proposed to control proliferation of astrocytes, serve to balance ion changes at GABAergic synapses, or they could enable the glial cell to detect neuronal synaptic activity.  相似文献   

19.
Patricia Gaspar 《PSN》2003,1(5):22-30
Cortical sensory maps are topographically ordered projections of the peripheral sensory receptors. The size of the representation of different body parts is determined by the number of sensory receptors in the periphery, with substantial variations between species, even amongst closely related mammals. Maps can be modified during critical periods of development, as has been most thoroughly characterised in the visual and the somatosensory system. Recently the field has moved from a phenomenological to a molecular era: studies using mouse genetics demonstrate the importance of molecules such as neurotrophins and of neurotransmitters such as glutamate, GABA and serotonin for the developmental plasticity of these maps. Serotonin and neurotrophins acts on receptors that are transiently expressed on the thalamocortical axons. The radical changes in gene expression patterns that occurr during this period in both the thalamus and the cerebral cortex could underlie the time course of this very particular form of plasticity.  相似文献   

20.
Hebbian forms of synaptic plasticity are required for the orderly development of sensory circuits in the brain and are powerful modulators of learning and memory in adulthood. During development, emergence of Hebbian plasticity leads to formation of functional circuits. By modeling the dynamics of neurotransmitter release during early postnatal cortical development we show that a developmentally regulated switch in vesicle exocytosis mode triggers associative (i.e. Hebbian) plasticity. Early in development spontaneous vesicle exocytosis (SVE), often considered as ''synaptic noise'', is important for homogenization of synaptic weights and maintenance of synaptic weights in the appropriate dynamic range. Our results demonstrate that SVE has a permissive, whereas subsequent evoked vesicle exocytosis (EVE) has an instructive role in the expression of Hebbian plasticity. A timed onset for Hebbian plasticity can be achieved by switching from SVE to EVE and the balance between SVE and EVE can control the effective rate of Hebbian plasticity. We further show that this developmental switch in neurotransmitter release mode enables maturation of spike-timing dependent plasticity. A mis-timed or inadequate SVE to EVE switch may lead to malformation of brain networks thereby contributing to the etiology of neurodevelopmental disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号