首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

2.
The aim of this study in the field was to investigate whether there are differences between the outer archipelago (Gullmar Fjord) and a semi-enclosed fjord system (Koljö Fjord) in occurrences of D. acuta and D. acuminata as well as in their content of diarrheic shellfish toxin (DST) per cell. When all data pairs of cell toxicity of D. acuminata and the corresponding number of cells l−1 from the two sites were tested in a regression analysis, a statistically significant negative correlation became evident and was apparent as a straight line on a log–log plot (p < 0.0001). Obviously, there was an overall inverse relationship between the population density of D. acuminata and the toxin content per cell. Plotted on a linear scale, all data-pairs of cell toxicity and cell number made up a parabolic curve. On this curve the data-pairs could be separated into three groups: (i) D. acuminata occurring in numbers of fewer than approximately 100 cells l−1, and with a toxin content per cell above 5 ρg cell−1; (ii) cell numbers between 100 and approximately 250 cells l−1 with a cell toxin content from 5 to 2 ρg cell−1; (iii) when the population became greater than 250 cells l−1, the toxicity, with few exceptions, was less than 2 ρg cell−1. By applying this subdivision, some clear patterns of the distribution of the differently toxic D. acuminata became evident. When comparing the cell toxicity of the two sites, it was obvious that the D. acuminata cells from all depths from the Gullmar Fjord as a mean were significantly more toxic compared to the Koljö Fjord samples. The results have demonstrated that approximately 100 high-toxicity cells in a low-density population at surface may lead to the same accumulation of DST in a mussel as the ingestion of 1500 low-toxicity cells from a high-density pycnocline population.  相似文献   

3.
Trophic interactions between zooplankton andPhaeocystis cf.globosa   总被引:1,自引:0,他引:1  
Mesozooplankton grazing onPhaeocystis cf.globosa was investigated by laboratory and field studies. Tests on 18 different species by means of laboratory incubation experiments, carried out at the Biologische Anstalt Helgoland, revealed thatPhaeocystis was ingested by 5 meroplanktonic and 6 holoplanktonic species; filtering and ingestion rates of the latter were determined. Among copepods, the highest feeding rates were found forCalanus helgolandicus andTemora longicornis. Copepods fed on all size-classes ofPhaeocystis offered (generally 4–500 μm equivalent spherical diameter [ESD]), but they preferred the colonies. FemaleC. helgolandicus and femaleT. longicornis preferably fed on larger colonies (ESD>200 μm and ESD>100 μm, respectively. However, a field study, carried out in the Marsdiep (Dutch Wadden Sea) showed phytoplankton grazing by the dominant copepodTemora longicornis to be negligible during thePhaeocystis spring bloom.T. longicornis gut fluorescence was inversely related toPhaeocystis dominance. The hypothesis has been put forward thatT. longicornis preferentially feeds on microzooplankton and by this may enhance rather than depressPhaeocystis blooms. Results from laboratory incubation experiments, including three trophic levels —Phaeocystis cf.globosa (algae),Strombidinopsis sp. (ciliate) andTemora longicornis (copepod) — support this hypothesis.  相似文献   

4.
The functional response of a planktonic ciliate, Strombidium sp. feeding on the dinoflagellate Pfiesteria piscicida non-toxic zoospores (NTZ) was experimentally studied with four different prey concentrations (43–3153 cells ml−1). Data from direct observations (NTZ inside individual Strombidium sp.) was used to calculate predator–prey specific ingestion and clearance rates. The ingestion rates varied between 0.68 and 14.26 NTZ ind−1 h−1, and with the predator–prey specific handling time of 2.83 min the Umax was 21.18 NTZ ind−1 h−1. The increase in the prey concentration between approximately 700 and 3000 NTZ ml−1 did not increase the uptake of prey, and at the lowest Pfiesteria NTZ concentrations the feeding efficiency of Strombidium sp. was lowered, possibly indicating a situation of threshold feeding. When data from direct observations of ingested Pfiesteria NTZ were compared with values of total NTZ loss from the experimental water during the experiment, ingestion was found to represent only a fraction of the total NTZ loss in the presence of ciliates. This discrepancy was concluded to be due to other grazer related factors than actual ciliate grazing. The control of the initial growth of Pfiesteria community, in a pre-bloom situation, would require only a small ciliate abundance (less than 5 ml−1), but when the Pfiesteria NTZ are scarce, relatively more ciliates are needed to limit the population growth of the dinoflagellate community because of the apparent feeding threshold. It is concluded that the formation of non-toxic P. piscicida blooms require periods of low grazing pressure or a means to escape grazing.  相似文献   

5.
To better understand the mechanism underlying the bloom outbreaks of dinoflagellates, Ceratium furca, and Ceratium fusus in the temperate coastal area of Sagami Bay, we investigated the diel changes of vertical migration, swimming speed, cell volume, and cell division. Our results from both the field and laboratory indicate that C. furca and C. fusus can migrate vertically between surface and sub-surface layers to avoid strong sunlight (>1000 μmol m−2 s−1). Diel vertical migration (DVM) of C. furca was observed in the laboratory, while that of C. fusus was not observed. C. furca demonstrated a constant DVM rhythm, i.e., their cells began to descend from the surface before the light was extinguished, and ascended into the surface before the light was turned on. The downward and upward migrations of the cells occurred at every 3 h before turning on and off the light, suggesting that the DVM pattern was independent of nutrient concentration. The swimming speeds of C. furca (avg. 250 μm s−1) were always faster than those of C. fusus (avg. 75 μm s−1). In addition, the speeds of C. furca during light periods were faster than those during dark periods, whereas the speeds of C. fusus remained relatively constant. A higher proportion of dividing cells was recorded near dawn (05:00–07:00 h). Cell volumes of C. furca and C. fusus did not markedly change between 12:00 and 21:00 h, but gradually increased until 03:00 h and then sharply decreased. Furthermore, the cell volume of the two Ceratium species was significantly shifted to the temporal pattern of cell division. Combined with the DVM manner of two Ceratium and cell division timing, only C. furca divided at the bottom, and then moved toward the surface shortly before the dark to light transition. Based on our observations, C. furca has an ecological advantage due to their DVM activity, since nutrients can be obtained well in the near bottom layers, while during the daytime, light present in nutrient-depleted surface water can be obtained using their high swimming speed. On the other hand, C. fusus stimulated by low salinity conditions, might be dependent on external environmental conditions such as additional nutrients following freshwater discharge by heavy rainfall because they may not perform active DVM due to a slow swimming ability. Our findings support that specific characteristics, including the DVM behavior in C. furca, yield a competitive advantage over C. fusus in Sagami Bay.  相似文献   

6.
We studied whether the selection of rotifer B. plicatilis strain (Japanese, Russian or Australian), as well as the addition of gamma-aminobutyric acid (GABA) to the culture water, are useful in stabilising rotifer cultures. We examined the effect of a combination of the following stressors: unionized ammonia (2.4 mg l−1), contamination by protozoa Euplotes sp. (10 cells ml−1) and addition of methyl cellulose to increase the culture water viscosity at 15 cp. Rotifer reproductive tests and enzyme activity measurements (glucosidase) were conducted to determine the effect of the treatments. All tests were conducted at 25 °C and rotifers were fed Nannochloropsis oculata at 7 × 106 cells ml−1. The combined effects of the stressors caused a significant decrease in lifespan, fecundity and glucosidase activity. The effect of the stressors on reproductive characteristics and glucosidase activity could be neutralized if rotifers were treated with GABA.  相似文献   

7.
Red tides dominated by the harmful dinoflagellate Cochlodinium polykrikoides have caused annual losses of USD $5–60 million to the Korean aquaculture industry annually since 1995 and a loss of USD $3 million during a 1999 net-pen fish mortality event in Canada. In order to evaluate the potential to control C. polykrikoides red tides dominated by using mass-cultured heterotrophic protistan grazers, we monitored the abundance of Strombidinopsis jeokjo (a naked ciliate) and C. polykrikoides after mass-cultured S. jeokjo was introduced into mesocosms (ca. 60 l) deployed in situ and containing natural red tide waters dominated by C. polykrikoides. Water temperature, salinity, and pH, as well as the abundance of co-occurring other protists and metazooplankton were measured concurrently. To compare the growth and ingestion rates of S. jeokjo feeding on cultured versus natural populations of C. polykrikoides, we also monitored the abundance of cultured C. polykrikoides and S. jeokjo in bottles during laboratory grazing experiments. S. jeokjo introduced into the mesocosms grew well, effectively reducing natural populations of C. polykrikoides from approximately 1000 cells ml−1 to below 10 cells ml−1 within 2 days. The growth and ingestion rates of cultured S. jeokjo on natural populations of C. polykrikoides in the mesocosms for the first 30 h (0.72 day−1 and 51 ng C grazer−1 day−1) were 84% and 44%, respectively, of those measured in the laboratory during bottle incubations with similar initial prey concentrations. The calculated grazing impact of S. jeokjo on natural populations of C. polykrikoides suggests that large-scale cultures of this ciliate could be used for controlling red tides by C. polykrikoides in small areas.  相似文献   

8.
Dinophysis acuminata and D. norvegica were observed in plankton net samples during the summer of 2002 from the Kandalaksha Gulf in the White Sea (North European Russia). Prorocentrum lima was found as an epiphyte on subtidal macroalgae in August, but not observed in plankton net samples. Protein phosphatase 2A (PP2A) inhibition measured 127.8 ng OA-equivalent/g of mussel (Mytilus edulis) hepatopancreas from samples collected a few days after when Dinophysis was recorded at a density of 1550 cells L−1. Liquid chromatography–mass spectrometry confirmed presence of several classes of lipophilic shellfish toxins associated with Dinophysis spp. in the mussels including okadaic acid, dinophysistoxin-1, pectenotoxins and yessotoxins. No azaspiracid was detected. This represents the first identification of phycotoxicity in the White Sea.  相似文献   

9.
You Wang  Xuexi Tang   《Harmful algae》2008,7(1):65-75
Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III, two species of causative bloom dinoflagellates in China, were investigated using bi-algal cultures under controlled laboratory conditions. The growth of P. donghaiense and S. trochoidea were significantly suppressed when the initial cell densities were set at 1.9 × 104 cells mL−1 or 1.9 × 105 cells mL−1 for P. donghaiense and 1.0 × 104 cells mL−1 for S. trochoidea when the initial size/density ratio was 1:1 or 10:1, respectively, but no out-competement was observed in either bi-algal culture by the end. The simultaneous assay on the culture filtrate showed that P. donghaiense filtrate prepared at a lower initial density (1.9 × 104 cells mL−1) stimulated the co-cultured S. trochoidea at a density of 1.0 × 104 cells mL−1, but filtrate at a higher density (1.9 × 105 cells mL−1) depressed its growth. Differently, the filtrate of S. trochoidea at a density of 1.0 × 104 cells mL−1 significantly suppressed the growth of P. donghaiense at a density of 1.9 × 104 cells mL−1, but had little stimulatory effect on P. donghaiense at a density of 1.9 × 105 cells mL−1compared to the control (P > 0.05). It is likely that these two species of microalgae interact with each other mainly by releasing allelochemical substance(s) into the culture medium, and a direct cell-to-cell contact was not necessary for their mutual interaction. We then quantify their interactions in the bi-algal culture by using a mathematical model. The estimated parameters from the model showed that the inhibition exerted by S. trochoidea on P. donghaiense was about 43 and 24 times stronger than the inhibitory effect that P. donghaiense exerted on S. trochoidea when the initial size/density were 1:1 and 10:1, respectively. S. trochoidea seemed to have a survival strategy that was superior to P. donghaiense in the bi-algal culture under controlled laboratory conditions. We also observed a closely positive relationship between the initial cell density and its effect on the co-cultured microalga by measuring the fluorenscence: filtrate prepared from higher initial cell density had stronger interference on the co-cultured microalga. Moreover, pre-treated under different temperature conditions (30 °C, 60 °C and 100 °C) would significantly changed the effect of culture filtrate on the co-cultured microalga. Result inferred that P. donghaiense or S. trochoidea would release allelochemicals into the bi-algal culture medium and the allelochemicals might be a mixture with temperature-sensitive components in it.  相似文献   

10.
11.
We report on the emergence of Cochlodinium polykrikoides blooms in the Peconic Estuary and Shinnecock Bay, NY, USA, during 2002–2006. Blooms occurred during late summer when temperatures and salinities ranged from 20 to 25 °C and 22 to 30 ppt, respectively. Bloom patches achieved cell densities exceeding 105 ml−1 and chlorophyll a levels exceeding 100 μg l−1, while background bloom densities were typically 103–104 cells ml−1. Light, scanning electron and ultrathin-section transmission electron microscopy suggested that cells isolated from blooms displayed characteristics of C. polykrikoides and provide the first clear documentation of the fine structure for this species. Sequencing of a hypervariable region of the large subunit rDNA confirmed this finding, displaying 100% similarity to other North American C. polykrikoides strains, but a lower similarity to strains from Southeast Asia (88–90%). Bioassay experiments demonstrated that 24 h exposure to bloom waters (>5 × 104 cells ml−1) killed 100% of multiple fish species (1-week-old Cyprinodon variegates, adult Fundulus majalis, adult Menidia menidia) and 80% of adult Fundulus heteroclitus. Microscopic evaluation of the gills of moribund fish revealed epithelial proliferation with focal areas of fusion of gill lamellae, suggesting impairment of gill function (e.g. respiration, nitrogen excretion, ion balance). Lower fish mortality was observed at intermediate C. polykrikoides densities (103–104 cells ml−1), while fish survived for 48 h at cell densities below 1 × 103 cells ml−1. The inability of frozen and thawed-, or filtered (0.2 μm)-bloom water to cause fish mortality suggested that the thick polysaccharide layer associated with cell membranes and/or a toxin principle within this layer may be responsible for fish mortality. Juvenile bay scallops (Argopecten irradians) and American oysters (Crassostrea virginica) experienced elevated mortality compared to control treatments during a 9-day exposure to bloom water (5 × 104 cells ml−1). Surviving scallops exposed to bloom water also experienced significantly reduced growth rates. Moribund shellfish displayed hyperplasia, hemorrhaging, squamation, and apoptosis in gill and digestive tissues with gill inflammation specifically associated with areas containing C. polykrikoides cells. In summary, our results indicate C. polykrikoides blooms have become annual events on eastern Long Island and that bloom waters are capable of causing rapid mortality in multiple species of finfish and shellfish.  相似文献   

12.
This study deals with a recently found phenomenon in the northern Baltic Sea: the occurrence of the dinoflagellate Dinophysis acuminata in the deep water below the thermocline. This was first observed in July 2001 at the station BY 15 in the Gotland Deep, where a sharp and intensive chlorophyll fluorescence signal was encountered at 77 m depth. The fluorescence peak was due to a dinoflagellate community dominated by Dinophysis acuminata (approximately 18 000 cells l−1). The survival of this community was followed in laboratory incubations in low light (20 μE m−2 s−1) and low temperature (+5 °C). After 5 weeks incubation, 67–84% of the initial cell abundance was lost, while few D. acuminata cells survived up to 24 weeks in the original sample. During the incubation, the fluorescence signal of the cells became fainter and the chloroplasts smaller and aggregated. On two occasions a D. acuminata cell was found attached to a smaller cell by a thin cytoplasm strand, possibly indicating mixotrophic behavior. During the following summer (2002), the photosynthetic efficiency of D. acuminata collected from thermocline layers of few stations and from the nitracline (75–80 m) at one station was studied in photosynthesis irradiance (P–E) incubations. Photosynthetic activity occurred in all populations, with differences in their photosynthetic carbon uptake rates. Photosynthesis of D. acuminata populations was saturated between 250 and 500 μE m−2 s−1; maximum cell-specific carbon uptake rates (Pm) ranged from 160–925 pg C cell−1 h−1. The Pm-rates in populations originating below the thermocline and in an artificially darkened population were markedly lower than in populations from upper water layers. The varying maximum photosynthetic rates of these populations may reflect their history, e.g. time spent in different light environments.  相似文献   

13.
Aquatic crustaceans often play a major role in organic matter (OM) transformation and recycling through their feeding and excretory activities. In this study, we measured the isotopic and elemental composition of organic matter fed to Palaemonetes sp. shrimp and the fecal pellets they produced. Nitrogen (N) content of the food (8.2 ± 0.2%, mean ± SD) was significantly higher than the fecal pellets (2.0 ± 0.9%), a pattern that also applied to the carbon (C) content of food (46.7 ± 1.0%) and fecal pellets (14.3 ± 6.8%). We also found a significant decrease in the N content of undigested, macerated food (6.1 ± 0.9 %) relative to food that had been soaked in artificial seawater (ASW) and artificial seawater that had previously contained shrimp (CASW) in the absence of feeding shrimp. We found no significant difference in N or C isotopic composition between the dry food, ASW- and CASW-soaked control food, and fecal pellets. We did, however, observe a significant increase in δ15N of the undigested, macerated food (δ15= 6.3 ± 0.6‰) relative to both the dry flake food (δ15= 5.6 ± 0.2‰) and controls incubated in the absence of shrimp in either ASW (δ15N = 5.6 ±0.3‰) or CASW (δ15N = 5.8 ± 0.1‰). Our results differ from previous findings of isotopic alteration of OM during processing by crustaceans (copepods), suggesting that isotopic changes related to feeding might be either taxon- or food-specific. This study also provides information on the influence of grazers/shredders on both the elemental and isotopic composition of POM, suggesting that larger aquatic shredders can influence the chemical composition of particles by either physical manipulation of the POM (release of DOM) or by facilitating microbial colonization of the POM.  相似文献   

14.
In situ growth rates of the toxin-producing dinoflagellate Dinophysis norvegica collected in the central Baltic Sea were estimated during the summers of 1998 and 1999. Flow cytometric measurements of the DNA cell cycle of D. norvegica yielded specific growth rates (μ) ranging between 0.1 and 0.4 per day, with the highest growth rates in stratified populations situated at 15–20 m depth. Carbon uptake rates, measured using 14C incubations followed by single-cell isolation, at irradiances corresponding to depths of maximum cell abundance were sufficient to sustain growth rates of 0.1–0.2 per day. The reason for D. norvegica accumulation in the thermocline, commonly at 15–20 m depth, is thus enigmatic. Comparison of depth distributions of cells with nutrient profiles suggests that one reason could be to sequester nutrients. Measurements of single-cell nutrient status of D. norvegica, using nuclear microanalysis, revealed severe deficiency of both nitrogen and phosphorus as compared to the Redfield ratio.It is also possible that suitable prey or substrate for mixotrophic feeding is accumulating in the thermocline. The fraction of cells containing digestive vacuoles ranged from 2 to 22% in the studied populations. Infection by the parasitic dinoflagellate Amoebophrya sp. was observed in D. norvegica in all samples analysed. The frequency of infected cells ranged from 1 to 3% of the population as diel averages, ranging from 0.2 to 6% between individual samples. No temporal trends in infection frequency were detected. Estimated loss rates based on observed infection frequencies were 0.5–2% of the D. norvegica population daily, suggesting that these parasites were not a major loss factor for D. norvegica during the periods of study.  相似文献   

15.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

16.
The predatory behavior of a carnivorous marine copepod, Euchaeta norvegica Boeck, feeding on eggs and larvae of the North Atlantic cod Gadus morhua L. was examined. In the laboratory, adult females of Euchaeta norvegica did not feed on eggs. Predation rates on yolk-sac larvae and starved post-yolk-sac larvae did not vary significantly with age up to 14 days old because of little change in size or activity of the larvae. This differs from E. elongata Esterly, a temperate congener, which selectively feeds on middle yolk-sac-stage larvae of the Pacific hake Merluccius productus Ayres. The subarctic congener Euchaeta norvegica appeared to detect tailbeats of the cod larvae. The functional response was measured for E. norvegica feeding on 2–4-day-old yolk-sac larvae. Maximum ingestion was achieved at 5 larvae · 1−1 with a rate of 6.3 ± 1.2 larvae·copepod−1·day−1 or 10.5% of its body weight. Estimates of short-term feeding rates, determined from gut-evacuation curves, indicate that E. norvegica, when preying on cod larvae only, must feed for at least 4 h to achieve this maximum ingestion rate. Presence of copepods as alternative prey for E. norvegica depresses its predation rate on cod, although the ingestion of cod greatly supplements the ration consumed. Copepods fed cod larvae form black melanin-pigmented fecal pellets in which larval cod otoliths have been found. Approximately 0.5 larva was required to form one fecal pellet. The last three developmental stages of the predatory copepod were able to ingest larvae and form dark-pigmented fecal pellets. The feeding of this carnivorous marine copepod may contribute to the mortality noted in the larval stages of cod because E. norvegica is numerous in the center of the cod-spawning area of Skrova in the Lofoten Islands, northern Norway.  相似文献   

17.
A series of experiments was conducted to examine effects of four strains of the estuarine dinoflagellate, Pfiesteria shumwayae, on the behavior and survival of larval and adult shellfish (bay scallop, Argopecten irradians; eastern oyster, Crassostrea virginica; northern quahogs, Mercenaria mercenaria; green mussels, Perna viridis [adults only]). In separate trials with larvae of A. irradians, C. virginica, and M. mercenaria, an aggressive predatory response of three strains of algal- and fish-fed P. shumwayae was observed (exception, algal-fed strain 1024C). Larval mortality resulted primarily from damage inflicted by physical attack of the flagellated cells, and secondarily from Pfiesteria toxin, as demonstrated in larval C. virginica exposed to P. shumwayae with versus without direct physical contact. Survival of adult shellfish and grazing activity depended upon the species and the cell density, strain, and nutritional history of P. shumwayae. No mortality of the four shellfish species was noted after 24 h of exposure to algal- or fish-fed P. shumwayae (strains 1024C, 1048C, and CCMP2089) in separate trials at ≤5 × 103 cells ml−1, whereas higher densities of fish-fed, but not algal-fed, populations (>7–8 × 103 cells ml−1) induced low (≤15%) but significant mortality. Adults of all four shellfish species sustained >90% mortality when exposed to fish-fed strain 270A1 (8 × 103 cells ml−1). In contrast, adult M. mercenaria and P. viridis exposed to a similar density of fish-fed strain 2172C sustained <15% mortality, and there was no mortality of A. irradians and C. virginica exposed to that strain. In mouse bioassays with tissue homogenates (adductor muscle, mantle, and whole animals) of A. irradians and M. mercenaria that had been exposed to P. shumwayae (three strains, separate trials), mice experienced several minutes of disorientation followed by recovery. Mice injected with tissue extracts from control animals fed cryptomonads showed no response. Grazing rates of adult shellfish on P. shumwayae (mean cell length ±1 standard error [S.E.], 9 ± 1 μm) generally were significantly lower when fed fish-fed (toxic) populations than when fed populations that previously had been maintained on algal prey, and grazing rates were highest with the nontoxic cryptomonad, Storeatula major (cell length 7 ± 1 μm). Abundant cysts of P. shumwayae were found in fecal strands of all shellfish species tested, and ≤45% of the feces produced viable flagellated cells when placed into favorable culture conditions. These findings were supported by a field study wherein fecal strands collected from field-collected adult shellfish (C. virginica, M. mercenaria, and ribbed mussels, Geukensia demissa) were confirmed to contain cysts of P. shumwayae, and these cysts produced fish-killing flagellated populations in standardized fish bioassays. Thus, predatory feeding by flagellated cells of P. shumwayae can adversely affect survival of larval bivalve molluscs, and grazing can be depressed when adult shellfish are fed P. shumwayae. The data suggest that P. shumwayae could affect recruitment of larval shellfish in estuaries and aquaculture facilities; shellfish can be adversely affected via reduced filtration rates; and adult shellfish may be vectors of toxic P. shumwayae when shellfish are transported from one geographic location to another.  相似文献   

18.
Perkins  R.G.  Underwood  G.J.C. 《Hydrobiologia》2002,484(1-3):75-87
An 18-day mesocosm study was performed in central Norway to assess the effect of enhanced nutrient input to the marine plankton community. This paper reports the responses of micro- and mesozooplankton to increased food supply due to elevated nutrient input. Seven mesocosms (M1–M7) were added variable doses of N, ranging from 0 to 2.19 m N l–1 d–1. Phosphorus and silicate was added in Redfield ratios. The ciliate community responded rapidly to the treatment, and reached maximum biomass of 88 g C l–1 within a week in the most fertilised mesocosm (M7). Tontonia sp. and a small Strombidium sp. dominated biomass and numbers, respectively. Ciliate biomass declined rapidly after the peak, returning to initial values by the end of the experiment (Day 18). Mesozooplankton biomass increased from the second week, due to recruitment of Acartia spp., Centropages spp. and Oithona sp. Numbers of Temora longicornis and Pseudocalanus sp. remained low. Highest biomass of mesozooplankton (116 g C l–1) was recorded in M6 by Day 18. Egg production rates for Acartia spp. peaked in M3 at Day 11, while calculated mortality rates for juvenile copepods was highest in M1 and M7. Estimated community net growth rates were highest in the most fertilised mesocosms for both copepods and ciliates. It is concluded that enhanced nutrient input affected both biomass and the relative species composition of the zooplankton community.  相似文献   

19.
A novel assay method using nuclease protection assay integrated with sandwich hybridization (NPA-SH) for qualitative and quantitative detection of microalgae has been developed. Two species-specific nuclease-protection-assay (NPA) probes targeted 28S ribosomal RNA of Prorocentrum minimum and Prorocentrum micans, respectively, were designed in this study. The assay consists of S1 nuclease protection, sandwich hybridization and signal detection. The specificity of the probes was verified with cultured algae in the laboratory and field sample from Jiaozhou Bay, and the quantity by NPA-SH analysis showed good agreement with that of cell-counting with a light microscope. The optical absorbance of probe binding on the target showed good linear fit with cell amount. A standard curve for P. minimum was established to correlate the optical absorbance to cell density on a basis in the linear range between 15 and 475 cells ml−1 seawater, and the equation deducted was ‘y = 0.0053 × x + 0.0658’ (R2 = 0.992, n = 4). The assay was sensitive to detect 15 cells ml−1 seawater. And for P. micans, with linear range between 0.6 and 20 cells ml−1 seawater, the equation deducted was ‘y = 0.1174 × x + 0.1106’ (R2 = 0.996, n = 4); the assay was sensitive to detect less than 1 cell ml−1 seawater. The inter-assay coefficients of variation (CVs) were 12.4 and 10.9%, respectively. The good specificity, sensitivity and reproducibility of the NPA-SH implied that this new technique could be extremely useful for qualitative and quantitative assay of P. minimum and P. micans at low abundance.  相似文献   

20.
Laboratory grazing experiments compared ingestion of two subclones of the dinoflagellate Alexandrium lusitanicum by gastropod veliger larvae (Nassarius sp.). While the two prey subclones originated from the same monoclonal isolate of A. lusitanicum, one possessed the ability to produce paralytic-shellfish-poisoning toxins (PSTs), while the other did not. Ingestion rates on the two Alexandrium subclones were not significantly different over a range of prey concentrations (approximately 100–660 cells ml−1), indicating that PSTs did not serve as a grazing deterrent for these larvae. However, ingestion rates on both subclones were low at the higher prey concentrations tested. Mortality of the predators also increased linearly with concentration of either subclone. These observations indicated that both A. lusitanicum subclones produced an unknown substance that inhibited and killed the grazers. Veliger mortality was not induced by culture filtrates or lysates, suggesting either that the substance was either highly labile or that contact with intact cells was required. Because toxic algae can produce multiple bioactive substances, experimental demonstrations of alleopathic effects of toxic species should not be assigned to known toxins without supporting evidence. In addition, the results show that the effectiveness of algal grazing deterrents can increase with cell concentration, which may have implications for bloom dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号