首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucuronic acid adducts of 1-naphthol, 2-naphthol and 4-methylumbelliferone activate microsomal UDP-glucuronyltransferase (EC 2.4.1.17) when the enzyme is assayed with p-nitrophenol as aglycone. Phenyl glucuronide and oestriol 3beta-glucuronide also activate UDP-glucuronyltransferase. but to a lesser extent. Activation by glucuronides is not dependent on metal ions, but is blocked by prior treatment of microsomal fractions with p-chloromercuribenzoate. The kinetic mechanism of activation is concluded to be an increase in the affinity of the enzyme for UDP-glucuronic acid. Activation by 1-naphthyl glucuronide, at high concentrations of p-nitrophenol, is not affected by 1-naphthol. Apparently 1-naphthyl glucuronide activates the preparation by binding at a site that is separate from the site of glucuronidation of 1-naphthol. Further evidence for the existence of distinct effector sites for the glucuronides was provided by the finding that activation by glucuronides is inhibited competitively by aglycone glucosides. These glucosides do not inhibit the rate of glucuronidation of p-nitrophenol in the absence of glucuronide adducts, nor do they alter the rate of glucuronidation of 1-naphthol. When UDP-glucuronyltransferase is assayed with 1-naphthol as aglycone it is activated by p-nitrophenyl glucuronide, 4-methyl-umbelliferyl glucuronide and under appropriate conditions by its own glucuronide. These activations are similarly inhibited by aglycone glucosides. p-Nitrophenyl glucuronide also stimulates the rate of glucuronidation of o-aminophenol, o-aminobenzoate and bilirubin.  相似文献   

2.
A protein separation scheme combining affinity or ion exchange sorption with hollow fiber cross-flow filtration is described. Sorptive gel particles were loaded into the shell side of a hollow fiber membrane module. In the adsorption step, crude protein mixtures were passed through the lumen and permeating proteins passed through the membrane to bind on the gel particles in the shell. During elution, a buffer of adequate ionic strength to desorb the bound proteins was passed through the lumen and permeated through the shell. The eluant was then collected at the outlet to the shell of the hollow fiber module. The concept is illustrated by two examples: the purification of butyrylcholinesterase (EC 3.1.1.7) from raw horse serum using the affinity gel procainamide-Sepharose as the packing and the separation of carboxylesterase (EC 3.1.1.1) from beef liver homogenate using DEAE-Sephadex as the packing. The technique has the advantage of high volumetric throughputs typical of hollow fiber membrane modules as well as the high capacity characteristic of chromatographic packings. In addition, cross-flow filtration of particulates, agglomerates, and debris in passing protein from lumen to shell side can help eliminate the need for extensive pretreatment.  相似文献   

3.
Mano N  Nishimura K  Narui T  Ikegawa S  Goto J 《Steroids》2002,67(3-4):257-262
Recent studies have suggested that bile acid acyl glucuronides form covalently bound protein adducts which may cause hypersensitivity reactions and increased morbidity in patients. Although the preferential biosynthesis of the acyl glucuronides has been known, the characterization of hepatic bile acid acyl glucuronosyltransferase has not yet been clearly elucidated. We have investigated the substrate specificity of the hepatic bile acid acyl glucuronosyltransferase using five common bile acids as substrates. The glucuronidation rate was dependent on the number of the hydroxy group on the steroid nucleus and mono-hydroxylated lithocholic acid, the more lipophilic common bile acid, was most effectively metabolized into its acyl glucuronide. The tri-hydroxylated cholic acid, the more water-soluble common bile acid, barely transformed into its glucuronide. Results showed decreasing of the initial velocity of the acyl glucuronidation with increasing of the concentration of substrate, lithocholic acid, owing to the substrate inhibition of the hepatic bile acid acyl glucuronosyltransferase. The substrate analogues, glycine and taurine conjugated bile acids, which exist in the body fluids in high concentrations, also inhibited the enzyme's activity. In addition, enzymatic reaction products, bile acid acyl glucuronides, also inhibited the activity. These inhibitory mechanisms may be responsible for the low concentration of bile acid acyl glucuronides in urine and may be an important detoxification system in the body.  相似文献   

4.
Asai A  Miyazawa T 《Life sciences》2000,67(23):2785-2793
Curcuminoids, curcumin and its structurally related compounds, constitute the phenolic yellowish pigment of turmeric. We investigated the absorption and metabolism of orally administered curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) in rats. HPLC and LC-MS analyses after enzymatic hydrolyses showed that the predominant metabolites in plasma following administration were glucuronides and glucuronide/sulfates (conjugates with both glucuronide and sulfate) of curcuminoids. The plasma concentrations of conjugated curcuminoids reached a maximum one hour after administration. The conjugative enzyme activities for glucuronidation and sulfation of curcumin were found in liver, kidney and intestinal mucosa. These results indicate that orally administered curcuminoids are absorbed from the alimentary tract and present in the general blood circulation after largely being metabolized to the form of glucuronide and glucuronide/sulfate conjugates.  相似文献   

5.
Steroid glucuronides: Human circulatory levels and formation by LNCaP cells   总被引:3,自引:0,他引:3  
We studied the relationship between circulating androsterone glucuronide, androstane-3,17β-diol glucuronide and androstane-3β,17β-diol glucuronide concentrations and adrenal as well as testicular C-19 steroids in men. Among the three 5-reduced steroid glucuronides, androsterone glucuronide is the predominant C-19 steroid measured in plasma and its levels are markedly elevated compared to those of the non-conjugated steroid. The marked rise in testosterone during puberty was strongly correlated with the increase in both androsterone glucuronide and androstane-3,17β-diol glucuronide, thus suggesting that testicular C-19 steroids are the main precursors of the steroid glucuronides. We also found that the presence of testicular androgen in plasma contributes to approx. 70% of plasma androsterone glucuronide and androstane-3,17β-diol glucuronide. Our data suggest that the adrenal C-19 steroids remaining in circulation after castration in men are converted into potent androgen which are then glucuronidated by UDP-glucuronyltransferase. We also demonstrated that the human prostate cell line LNCaP is capable of converting to a large extent androstenedione into androsterone glucuronide. Our data further confirm that glucuronidation is a major pathway of steroid metabolism in steroid target tissues.  相似文献   

6.
The microsomal fraction of rat liver containing uridine diphospho-glucuronosyltransferase (UDPGT; EC 2.4.1.17) has been covalently immobilized on a high performance chromatographic support. In this study Nucleosil Si-500 silica was converted into diol-bonded silica and subsequently converted into an aldehyde form through oxidation with sodium periodate. The microsomal fraction was immobilized via Schiff base formation followed by reduction with sodium cyanoborohydride. The resulting immobilized enzyme reactor (IMER) was placed in a multi-dimensional chromatographic system which utilized a mixed mode (C18 and anion exchange) column to trap the parent compound and glucuronide and a C18 column to separate the substrate and product. The IMER system was used for the online glucuronidation of 4-methylumbelliferone (4Me7OHC) and acetaminophen (APAP). The Michaelis-Menten kinetic parameters (Km and Vmax) associated with the formation of 4Me7OHC and APAP glucuronides demonstrated that the immobilization had not significantly affected the enzymatic activity of the UDPGT relative to the non-immobilized enzyme. The IMER retained enzymatic activity for more than 6 weeks. The results of this study demonstrate an easy and convenient way to identify compounds which may be glucuronidated and to synthesize and characterize the resulting products.  相似文献   

7.
Thermobifida fusca was grown on cellulose (Solka-Floc), xylan or corn fiber and the supernatant extracellular enzymes were concentrated. SDS gels showed markedly different protein patterns for the three different carbon sources. Activity assays on a variety of synthetic and natural substrates showed major differences in the concentrated extracellular enzyme activities. These crude enzyme preparations were used to hydrolyze corn fiber, a low-value biomass byproduct of the wet milling of corn. Approximately 180 mg of reducing sugar were produced per gram of untreated corn fiber. When corn fiber was pretreated with alkaline hydrogen peroxide, up to 429 mg of reducing sugars were released per gram of corn fiber. Saccharification was enhanced by the addition of beta-glucosidase or by the addition of a crude xylanase preparation from Aureobasidium sp.  相似文献   

8.
Immobilization of an IgG1 monoclonal antibody (MAb) was optimized using a unique hydrazide-preactivated hydrophilic hollow fiber membrane as the support matrix. Modules containing 0.42 milliliters of membrane volume (mlmv) were offered varying amounts of purified MAb. The highest immobilization efficiency on the hollow fiber membranes was 88% at a MAb loading concentration of 0.35 mg/ml. The optimum range of MAb concentrations to achieve the best immobilization efficiency was 0.18-0.45 mg/ml. A larger module containing 9.7 mlmv immobilized greater than 3.0 mg MAb/mlmv at an efficiency of greater than 90%. The total amount of MAb immobilized on the membranes within each module was in direct proportion to the total amount of membrane volume. Preliminary data suggest the optimized immunoaffinity hollow fiber membrane matrix produced in this study is stable and can achieve a product capacity of greater than 2.0 mg/mlmv. In concert with an automated fluid handling system, such as the TRIO(TM) Bioprocessing System, rapid accurate information can be easily generated on process parameters and scale-up considerations where an immunoaffinity step is included in the downstream purification protocol.  相似文献   

9.
Synthesis of reference standards is needed to determine the presence and function of steroid glucuronides in the brain or other tissues, because commercial sources of steroid glucuronide standards are limited or unavailable. In the present study porcine, rat, and bovine liver microsomes were tested to evaluate their ability to glucuronidate eight neurosteroids and neuroactive steroids of various types: dehydroepiandrosterone, pregnenolone, isopregnanolone, 5alpha-tetrahydrodeoxycorticosterone, corticosterone, cortisol, beta-estradiol, and testosterone. In general, the glucuronidation efficiency of rat liver was rather poor compared with that of bovine and porcine liver microsomes. Since porcine liver apparently has a relatively large amount of dehydrogenase, its microsomes also produced dehydrogenated steroids and their glucuronides, as well as various regioisomers in which the site of glucuronidation varied. In contrast, bovine liver microsomes produced mainly a single major glucuronidation product and few dehydrogenation products and gave the best overall yield for two-third of the steroids tested. The enzymatic synthesis of five glucuronides of four steroids was carried out and the conditions, purification, and analytical methods for the glucuronidation products were optimized. The steroid glucuronides synthesized were characterized by nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS). The stereochemically pure steroid glucuronide conjugates were recovered in milligram amounts (yield 10-78%) and good purity (>85-90%), which is sufficient for LC-MS/MS method development and analyses of steroid glucuronides in biological matrices such as brain, urine, or plasma.  相似文献   

10.
Rapid cometabolism of trichloroethylene (TCE) by pure cultures of Methylosinus trichosporium OB3b PP358 was demonstrated in a two‐stage hollow‐fiber membrane bioreactor over the course of 3 weeks. PP358 was grown in a continuous‐flow chemostat and circulated through the shell of a hollow‐fiber membrane module (HFMM), while TCE contaminated water (160 to 1450 μg/L) was pumped through the fiber lumen (fiber interior). In parallel‐flow HFMM biological experiments, 82% to 89% of the influent TCE was removed from the lumen (5.1‐min residence time) with 99% of the transferred TCE undergoing biodegradation. Biological experiments in a larger capacity baffled radial‐flow HFMM resulted in 66% to 99% TCE transferred and 93% to 96% TCE biodegradation at lumen residence times of between 1.5 and 3.7 min. Biodegradation was maintained throughout the experiments at pseudo‐first‐order biodegradation rate constants of 0.41 to 2.8 L/mg TSS/day. Best‐fit computer modeling of the baffled radial‐flow biological process estimated mass transfer coefficients as large as 2.7 × 10−2 cm/min. The computer model was also shown to simulate the experimental results quite well. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 681–692, 1999.  相似文献   

11.
Glucuronide conjugates represent one of the major types of naturally occurring phase 2 metabolites of xenobiotics and endobiotics. The process underlying their formation, glucuronidation, is normally considered detoxifying, because glucuronides usually possess less intrinsic biological or chemical activity than their parent aglycones and they are rapid excreted. However, a number of glucuronide conjugates are known that are active and may contribute to pharmacological activities or toxicities associated with their parent compounds. These include two classes of glucuronides with electrophilic chemical reactivity (N-O-glucuronides of hydroxamic acids and acyl glucuronides of carboxylic acids) and several types of glucuronides that impart biological effects through non-covalent interactions (morphine 6-O-glucuronide, retinoid glucuronides, and D-ring glucuronides of estrogens). Glucuronides may thus contribute to clinically significant effects, including environmental arylamine-induced carcinogenesis, drug hypersensitivity and other toxicities associated with carboxylic acid drugs, morphine analgesia, and cholestasis from estrogens. This review summarizes the rat and human UDP-glucuronosyltransferases that may be involved in the formation of bioactive glucuronides, including their substrate- and tissue-specificity and genetic and environmental influences on their activity. This knowledge may be useful for enhancing the therapeutic efficacy and minimizing the risk of adverse effects associated with xenobiotics that undergo bioactivating glucuronidation reactions.  相似文献   

12.
To improve protein separation, a novel integrated device combining membrane filtration and chromatography has been developed. The device basically consists of a hollow fiber filtration module whose shell side is filled with chromatographic resin beads. However, there is an essentially impermeable coated zone near the hollow fiber module outlet. The integrated device enjoys the advantages of both membrane filtration and chromatography; it also allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane; the rest of the hollow fiber membrane remained unaffected. Myoglobin (Mb) and alpha-lactalbumin (alpha-LA) were primarily used as model proteins in a binary mixture; binary mixtures of Mb and bovine serum albumin (BSA) were also investigated. Separation behaviors of binary protein mixtures were studied in devices having either an ultrafiltration (UF) or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after introducing the impermeable coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, four loading-washing-elution-reequilibration-based cyclic runs for separation of Mb and alpha-LA were performed in the device using a MF membrane with a coated zone without cleaning in between. The Mb and alpha-LA elution profiles for the four consecutive runs were almost superimposable. Due to lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem, unlike in conventional microfiltration.  相似文献   

13.
Hepatic glucuronidation of a wide variety of substrates is catalyzed by the membrane-bound UDP-glucuronosyltransferases. Uridine 5'-diphosphoglucuronic acid (UDP-GlcUA) is the essential cosubstrate for all UDP-glucuronosyltransferase-mediated reactions. The mechanism by which this bulky, hydrophilic nucleotide-sugar is transported from the cytosol (where it is synthesized) to its binding site(s) on the enzyme is unknown. To determine whether a membrane carrier mediates the access of UDP-GlcUA into the endoplasmic reticulum, the transport of uridine 5'-diphospho-D-[U-14C]glucuronic acid into vesicles of rough and smooth endoplasmic reticulum isolated from rat liver was investigated at 38 degrees C using a rapid filtration technique. Uptake of UDP-GlcUA by both rough and smooth vesicles was extremely rapid (linear for only 10-20 s) and temperature-dependent (negligible at 4 degrees C). UDP-GlcUA uptake was saturable, and similar kinetic parameters were obtained for rough and smooth vesicles (Km 1.9 microM, Vmax 443 pmol/mg protein per min, and Km 1.3 microM, Vmax 503 pmol/mg protein per min, respectively). The uptake of UDP-GlcUA also exhibited a high degree of specificity, since many related compounds, including UMP, UDP and UDP-Glc, did not influence uptake. In addition, the non-penetrating inhibitors of anion transport, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), and probenecid, markedly inhibited UDP-GlcUA uptake. Finally, osmotic modulation of the intravesicular volume did not affect total uptake of UDP-GlcUA by membrane vesicles at equilibrium, indicating that this nucleotide-sugar is transported into the membrane rather than the intravesicular space. Collectively, these data provide direct evidence for a specific, carrier-mediated uptake process, which transports UDP-GlcUA from the cytosol into the endoplasmic reticulum of hepatocytes. This UDP-GlcUA transporter may be involved in the regulation of hepatic glucuronidation reactions.  相似文献   

14.
Stability of furosemide glucuronide, the major metabolite of furosemide, was studied in order to accurately assess the glucuronidation of furosemide. Furosemide glucuronide was purified by high-performance liquid chromatography, and the mass spectrum of furosemide glucuronide showed the molecular ion peaks [M−H] at 505 and 507 (m/z). Furosemide glucuronide was photodegraded to the compound, which was shown more hydrophilic than furosemide glucuronide by high-performance liquid chromatography assay. The photodegradation product of furosemide glucuronide was hydrolyzed to one of the photodegradation products of furosemide by β-glucuronidase, indicating that the photodegradation product of furosemide glucuronide possessed a glucuronic acid moiety. Furthermore, the mass spectrum of the photodegradation product of furosemide glucuronide exhibited molecular ion peaks [M−H] at 487 and [M−2H+2Na] at 509, indicating the chlorine displacement of furosemide glucuronide by a hydroxyl group. Furosemide glucuronide was unstable in an aqueous solution (pH=7.4), and presumed acyl migration isomers of furosemide glucuronide (furosemide glucuronide-isomers) were detected by high-performance liquid chromatography equipped with photodiode array UV detector. The UV spectra of seven furosemide glucuronide-isomers were closely similar to that of furosemide glucuronide but not furosemide. Exposing a mixture of furosemide glucuronide and furosemide glucuronide-isomers to light resulted in the production of new compounds. UV spectra of photodegradation products of furosemide glucuronide-isomers were closely similar to those of photodegradation product of furosemide glucuronide. These results suggested that furosemide glucuronide-isomers were also photodegraded, resulting in the displacement of chlorine by a hydroxyl group as in furosemide glucuronide.  相似文献   

15.
Acyl glucuronides are known to be labile conjugates, which undergo hydrolysis and bind irreversibly to proteins. The lipid-regulating agent (±)-beclobrate is immediately converted to the free acid after oral administration. Further metabolism leads to formation of the corresponding diastereomeric acyl glucuronides. Beclobric acid glucuronides were quantified by indirect measurement with an HPLC method based on chiral fluorescent derivatization of the carboxylic acid and subsequent normal-phase chromatography. The renal clearance of unchanged drug is low, with almost all drug excreted into urine as glucuronic acid conjugates. Beclobric acid glucuronide is also detectable in plasma. In vitro degradation studies with beclobric acid glucuronide (at a concentration of 5 μM in 150 mM phosphate buffer pH 7.4) exhibited a minor tendency for acyl migration and hydrolysis, i.e., a higher stability than has been observed for the acyl glucuronides of most other drugs. The in vitro degradation half-lives of the two beclobric acid β-1-O-acyl glucuronides were 22.7 and 25.7 h. After incubation with pooled plasma and human serum albumin in buffer pH 7.4 irreversible binding was measured in vitro. No significant difference between the two enantiomers was detected with respect to the magnitude of in vitro irreversible binding. In 3 healthy male volunteers the extent of irreversible binding of both beclobric acid enantiomers to plasma proteins was investigated after single and multiple oral doses of racemic beclobrate (100 mg once daily). Irreversible binding of both enantiomers was observed in all volunteers. The adduct densities for (?)- and (+)-beclobric acid after single 100 mg beclobrate doses were 0.147 × 10?4 and 0.177 × 10?4 mol/mol protein. Multipie dosing increased irreversible binding 3- to 4-fold. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Glucuronidation by liver microsomes of 3'-azido-3'-deoxythymidine (AZT) was characterized in human and in various animal species. The glucuronide isolated by HPLC, was identified by mass spectrometry (fast atom bombardment, desorption in chemical ionization), and beta-glucuronidase hydrolysis. AZT glucuronidation reaction in liver microsomes of human and monkey proceeded similarly with an apparent Vmax of 0.98 nmol/min/mg protein and apparent Km of 13 mM. Oleoyl lysophosphatidylcholine activated more than twofold the formation of the glucuronide. Human kidney microsomes could also biosynthesize AZT glucuronide, although to a lower extent (six times less than the corresponding liver). Probenecid, which is administered to AIDS patients, decreased hepatic AZT glucuronidation in vitro (I50 = 1.5 mM), whereas paracetamol did not exert any effect at concentrations up to 21.5 mM. Morphine also inhibited the reaction (I50 = 2.7 mM). AZT glucuronidation presented the highest rate in human and in monkey (0.50 nmol/min/mg protein); pig and rat glucuronidated the drug two and three times less, respectively. In Gunn rat, the specific activity in liver microsomes was similar (0.18 nmol/min/mg protein) to that of the congenic normal strain; this suggests that an isozyme other than bilirubin UDP-glucuronosyltransferase catalyzed the reaction. In rats, AZT glucuronidation was stimulated fourfold by phenobarbital; 3-methylcholanthrene or clofibrate failed to increase this activity. This result was consistent with the bulkiness of the AZT molecule (thickness 6.7 A), which is a critical structural factor for glucuronidation of the drug by phenobarbital-induced isozymes. Altogether, the results strongly indicate that UDP-glucuronosyltransferase (phenobarbital inducible forms) is responsible for AZT glucuronidation.  相似文献   

17.
The glucuronidation of o-aminophenol is unaffected by p-nitrophenyl gluronide when native microsomal fractions are the source of UDP-glucuronyltransferase. When microsomal fractions treated with Lubrol detergent are the source of the enzyme, however, p-nitrophenyl glucuronide exhibits competitive inhibition of o-aminophenol glucuronidation. In addition, the apparent K1 for p-nitrophenyl glucuronide is the same whether o-aminophenol or p-nitrophenol is the acceptor substrate. The data suggest that UDP-glucuronyltransferase has one binding site for the two phenols and that the absence of inhibition observed in native microsomal fractions is dependent on an intact microsomal membrane.  相似文献   

18.
Hydrolysis of 3-methylumbelliferyl glucuronide by liver microsomal β-glucuronidase is enhanced about 2-fold by micromolar concentrations of Ca2+; half-maximal stimulation occurs with 0.35 μM Ca2+. Dissociation of the enzyme from microsomal membranes by various treatments increases basal β-glucuronidase activity and markedly decreases the sensitivity of the enzyme to Ca2+. Under similar conditions, the soluble lysosomal form of the enzyme is insensitive to Ca2+. Ca2+ stimulation was unaltered by addition of calmodulin inhibitors or exogenous calmodulin. Thus, interaction of cytosolic Ca2+ with membrane bound β-glucuronidase may modulate glucuronidation in intact hepatocytes via a novel, calmodulin-independent mechanism.  相似文献   

19.
Quercetin glycosides are common dietary antioxidants. In general, however, potential biological effects of the circulating plasma metabolites (e.g., glucuronide conjugates) have not been measured. We have determined the rate of glucuronidation of quercetin at each position on the polyphenol ring by human liver cell-free extracts containing UDP-glucuronosyltransferases. The apparent affinity of UDP-glucuronosyltransferase followed the order 4′- > 3′- > 7- > 3, although the apparent maximum rate of formation was for the 7-position. The 5-position did not appear to be a site for conjugation. After isolation of individual glucuronides, the inhibition of xanthine oxidase and lipoxygenase were assessed. The Ki for the inhibition of xanthine oxidase by quercetin glucuronides followed the order 4′- > 3′- > 7- > 3-, with quercetin-4′-glucuronide a particularly potent inhibitor (Ki = 0.25 μM). The glucuronides, with the exception of quercetin-3-glucuronide, were also inhibitors of lipoxygenase. Quercetin glucuronides are metabolites of quercetin in humans, and these compounds can retain some biological activity depending on conjugation position at expected plasma concentrations.  相似文献   

20.
Summary The sulfate and glucuronide conjugation of acetaminophen (APAP) by hepatocytes cultured on Matrigel or type 1 collagen was compared to APAP metabolism in vivo. The metabolic fate of low (15 mg/kg), medium (125 mg/kg), and high (300 mg/kg) doses of APAP injected intraperitoneally were determined in male and female rats. Males excreted more APAP as the sulfate conjugate than females, which correlated with the twofold greater APAP sulfotransferase activity in the male vs. females (301±24 vs. 156±18 pmol · mg−1 protein · min−1). Also, as sulfate conjugation became saturated, there was a dose-related shift in APAP metabolism from sulfate to glucuronide conjugation in both sexes. After death, the livers of the same animals were perfused with collagenase and the hepatocytes cultured in modified Waymouth’s medium on either Matrigel or rat-tail collagen, with various doses of APAP (0, 0.125, 0.25, 0.5, and 1.0 mM). Sex differences in APAP sulfation and glucuronidation persisted in culture for up to 4 days, with sulfation predominating in the male similar to in vivo. With increasing APAP concentration (dose), there was a saturation of sulfate conjugation and a shift to glucuronidation as observed in vivo. Sex differences in APAP sulfation and glucuronidation were no longer significant by Day 4 in culture. Sulfation, and to a lesser extent, glucuronidation, were more stable on Matrigel than collagen. We concluded that APAP metabolism of freshly isolated hepatocytes could replicate in vivo sex differences in conjugation, and that Matrigel was superior to collagen as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号