首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversity and biogeography of the Antarctic flora   总被引:1,自引:0,他引:1  
Aim To establish how well the terrestrial flora of the Antarctic has been sampled, how well the flora is known, and to determine the major patterns in diversity and biogeography. Location Antarctica south of 60° S, together with the South Sandwich Islands, but excluding South Georgia, Bouvetøya and the periantarctic islands. Methods Plant occurrence data were collated from herbarium specimens and literature records, and assembled into the Antarctic Plant Database. Distributional patterns were analysed using a geographic information system. Biogeographical patterns were determined with a variety of multivariate statistics. Results Plants have been recorded from throughout the Antarctic, including all latitudes between 60° S and 86° S. Species richness declines with latitude along the Antarctic Peninsula, but there was no evidence for a similar cline in Victoria Land and the Transantarctic mountains. Multi‐dimensional scaling ordinations showed that the species compositions of the South Orkney, South Shetland Islands and the north‐western Antarctic Peninsula are very similar to each other, as are the floras of different regions in continental Antarctica. They also suggest, however, that the eastern Antarctic Peninsula flora is more similar to the flora of the southern Antarctic Peninsula than to the continental flora (with which it has traditionally been linked). The South Sandwich Islands have a flora that is very dissimilar to that in all Antarctic regions, probably because of their isolation and volcanic nature. Main conclusions The Antarctic flora has been reasonably well sampled, but certain areas require further floristic surveys. Available data do, however, allow for a number of robust conclusions. A diversity gradient exists along the Antarctic Peninsula, with fewer species (but not fewer higher taxa) at higher latitudes. Multi‐dimensional scaling ordination suggests three major floral provinces within Antarctica: northern maritime, southern maritime, and continental. Patterns of endemism suggest that a proportion of the lichen flora may have an ancient vicariant distribution, while most bryophytes are more recent colonists.  相似文献   

2.
3.
The mackerel icefish (Champsocephalus gunnari Lönnberg E (1905) The Fishes of the Swedish South Polar Expedition. Wiss. Ergebnisse Schwedische Südpol- Exped. 1901–1903, vol 5, p 37 is widely distributed south of the Antarctic convergence and over shelf areas surrounding sub-Antarctic Islands. In order to evaluate global population structure in this species, we examined DNA sequence variation in four mitochondrial regions and four nuclear genes in icefish from four locations in the Atlantic Ocean sector and one location in the Indian Ocean. Despite small sample sizes, mitochondrial and nuclear gene data indicated the existence of at least three genetically distinct stocks: Heard Island, South Shetland Islands, and the remaining Atlantic populations (Shag Rocks, South Georgia, and Bouvet Island). The mitochondrial and nuclear SNP markers developed here will be useful for more extensive analyses of population structure in this species.  相似文献   

4.
We report the first detailed study of the terrestrial invertebrate fauna of the Byers Peninsula SSSI, Livingston Island, South Shetland Islands. Fourteen micro-arthropod taxa (10 Acari, four Collembola) and two Diptera are recorded, including the first record of the mite Edwardzetes dentifer from the maritime Antarctic. The first record of the midge Belgica antarctica from neighbouring Snow Island is also given. Population composition and density were described in samples from a wide range of terrestrial and freshwater habitats. There was no strong relationship between habitat and microarthropod species occurrence, although comparison of completely vegetated and more stony sites revealed greater population densities at the vegetated sites, and different species proportions at each. Some individual samples contained a wide range of species with none achieving numerical dominance, whilst others from superficially similar sites were dominated by one species. Dipterans were limited to a small number of lakes, streams and seepage areas, where they were sometimes abundant. Population density data and species occurrence are compared with previously published studies from the maritime Antarctic and elsewhere.  相似文献   

5.
Question: How does geothermal activity influence terrestrial plant colonization, species composition and community development in the Antarctic? Location: South Sandwich Islands, maritime Antarctic. Methods: Bryophytes were documented during a biological survey of the archipelago in January and February 1997. Particular attention was given to sites under current or recent influence of geothermal activity. Temperature profiles obtained across defined areas of activity on several islands were linked with the presence of specific bryophytes. Results: Greatest bryophyte richness was associated with geothermally influenced ground. Of 35 moss and nine liverwort species recorded, only four mosses were never associated with heated ground, while eight of the liverworts and 50% of the mosses were found only on actively or recently heated ground. Some species occur in unheated sites elsewhere in the maritime Antarctic, but were absent from such habitats on the South Sandwich Islands. Several species occurred in distinct zones around fumaroles. Maximum temperatures recorded within the upper 0.5 cm of the vegetation surface were 40 ‐ 47 °C, with only Campylopus introflexus tolerating such temperatures. Maximum temperatures 2.5 or 5 cm below the vegetation surface of this moss reached 75 °C. Other bryophytes regularly present in zoned vegetation included the mosses Dicranella hookeri, Sanionia georgico‐uncinata, Pohlia nutans and Notoligotrichum trichodon, and the liverworts Cryptochila grandiflora and Marchantia berteroana. Surface temperatures of 25 ‐ 35 °C and subsurface temperatures of 50 ‐ 60 °C were recorded in these species. Conclusions: These exceptional plant communities illustrate the transport of viable propagules into the Antarctic. Individually ephemeral in nature, the longer term existence of geothermal habitats on islands along the Scotia Arc may have provided refugia during periods of glacial expansion, facilitating subsequent recolonization of Antarctic terrestrial habitats.  相似文献   

6.
Ciliate diversity was investigated in situ in freshwater ecosystems of the maritime (South Shetland Islands, mainly Livingston Island, 63 degrees S) and continental Antarctic (Victoria Land, 75 degrees S), and the High Arctic (Svalbard, 79 degrees N). In total, 334 species from 117 genera were identified in both polar regions, i.e. 210 spp. (98 genera) in the Arctic, 120 spp. (73 genera) in the maritime and 59 spp. (41 genera) in the continental Antarctic. Forty-four species (13% of all species) were common to both Arctic and Antarctic freshwater bodies and 19 spp. to both Antarctic areas (12% of all species). Many taxa are cosmopolitans but some, e.g. Stentor and Metopus spp., are not, and over 20% of the taxa found in any one of the three areas are new to science. Cluster analysis revealed that species similarity between different biotopes (soil, moss) within a study area was higher than between similar biotopes in different regions. Distinct differences in the species composition of freshwater and terrestrial communities indicate that most limnetic ciliates are not ubiquitously distributed. These observations and the low congruence in species composition between both polar areas, within Antarctica and between high- and temperate-latitude water bodies, respectively, suggest that long-distance dispersal of limnetic ciliates is restricted and that some species have a limited geographical distribution.  相似文献   

7.
Quaternary glaciations in Antarctica drastically modified geographical ranges and population sizes of marine benthic invertebrates and thus affected the amount and distribution of intraspecific genetic variation. Here, we present new genetic information in the Antarctic limpet Nacella concinna, a dominant Antarctic benthic species along shallow ice‐free rocky ecosystems. We examined the patterns of genetic diversity and structure in this broadcast spawner along maritime Antarctica and from the peri‐Antarctic island of South Georgia. Genetic analyses showed that N. concinna represents a single panmictic unit in maritime Antarctic. Low levels of genetic diversity characterized this population; its median‐joining haplotype network revealed a typical star‐like topology with a short genealogy and a dominant haplotype broadly distributed. As previously reported with nuclear markers, we detected significant genetic differentiation between South Georgia Island and maritime Antarctica populations. Higher levels of genetic diversity, a more expanded genealogy and the presence of more private haplotypes support the hypothesis of glacial persistence in this peri‐Antarctic island. Bayesian Skyline plot and mismatch distribution analyses recognized an older demographic history in South Georgia. Approximate Bayesian computations did not support the persistence of N. concinna along maritime Antarctica during the last glacial period, but indicated the resilience of the species in peri‐Antarctic refugia (South Georgia Island). We proposed a model of Quaternary Biogeography for Antarctic marine benthic invertebrates with shallow and narrow bathymetric ranges including (i) extinction of maritime Antarctic populations during glacial periods; (ii) persistence of populations in peri‐Antarctic refugia; and (iii) recolonization of maritime Antarctica following the deglaciation process.  相似文献   

8.
The cyanobacterial flora of maritime Antarctica appears to contain many endemic species and only few cosmopolitan or wider-distributed taxa. Several morphospecies that have been erroneously identified in the past following available keys from temperate or tropical zones belong in fact to little-known and poorly described Antarctic cyanobacteria. Here we describe the taxonomy of one such example, the colonial species Gloeocapsopsis aurea . This cyanobacterium produces irregular, packet-like colonies that form black mats, films and crusts. Based on analysis of algal samples from Punta Cierva (Antarctic Peninsula) and King George Island (South Shetland Islands), this taxon is widely distributed in coastal, deglaciated areas of the maritime Antarctic. It is an important, often dominating, ecotype, mostly colonising irrigated rocks but also found in a variety of other aquatic and semi-aquatic habitats under a wide range of conductivities, pH and nutrient regimes.  相似文献   

9.
An insect introduction to the maritime Antarctic   总被引:4,自引:0,他引:4  
Although several invertebrates have been introduced by Man into the Antarctic, no holometabolous insects have survived to colonize terrestrial habitats successfully. Data are presented on the survival of populations of a chironomid midge, together with an enchytraeid worm, for 17 years in a maritime Antarctic site at Signy Island, South Orkney Islands. Both species are thought to have been introduced on plant material transplanted from either South Georgia or the Falkland Islands or both in 1967. Population densities average 25718m-2 for the dipteran larvae and 3243 m-2 for the worms. Successful completion of the midge's life cycle was indicated by emergence of brachypterous adults and oviposition (the population is parthenogenetic with only females present). Although both taxa are capable of supercooling to between -13 and -26°C, this capacity may not be sufficient in a severe winter to avoid lethal freezing. Four potential cryoprotectants were found in insect extracts, but in concentrations (< 1 % fresh weight) unlikely to influence cold hardiness. Both invertebrates appear to be pre-adapted for survival in much harsher conditions than they normally experience, by the extension of existing physiological mechanisms. It is concluded that the main limitations to invertebrate colonization of suitable Antarctic land areas by soil-dwelling species are geographical.  相似文献   

10.
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ~43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.  相似文献   

11.
Two species of chironomid midges are currently described in the genus Belgica Jacobs, 1900. Belgica antarctica Jacobs, 1900 is endemic to parts of the maritime Antarctic, and Belgica albipes (Séguy, 1965) is endemic to Îles Crozet, a sub‐Antarctic archipelago in the southern Indian Ocean. The relationships between these species, and their closest known relative (Eretmoptera murphyi Schaeffer, 1914, endemic to sub‐Antarctic South Georgia), were examined by sequencing DNA fragments for domains 1 and 3–5 of 28S ribosomal DNA and the mitochondrial gene cytochrome c oxidase 1 (cox1). The resulting molecular relationships between the three species were unclear, although their position within the subfamily Orthocladiinae of the Chironomidae, as generated by classical taxonomy, was confirmed. Our data reinforce earlier doubts, based on classical morphological approaches, that the generic placement of E. murphyi may be incorrect. Further analyses may indeed confirm that the species represents a third member of the genus Belgica. Genetic distance analysis, limited to the barcode region of cox1, indicated high differentiation between the two populations of B. albipes sampled (one obtained from the type location), suggesting the likely presence of cryptic species within this taxon, and that the taxonomic status of this species should be revised. Analysis of cox1 sequences in B. antarctica highlighted a strong genetic structure between populations obtained from 12 locations along the Antarctic Peninsula and the South Shetland Islands archipelago, with a number of distinctive mtDNA lineages inhabiting geographically distinct areas. In particular, we found four different haplogroups constituting geographically close but genetically distinct populations, a pattern likely to have been encouraged by the brachyptery of the members of this genus. We suggest that the different genetic patterns shown by each haplogroup have probably been determined by historical dispersal and colonization events during the Pleistocene, and are consistent with their survival in refuges in situ during successive glacial maxima over this period. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 258–274.  相似文献   

12.
13.
Summary Six species of Stereocaulon and one unnamed taxon (close to S. glabrum) are reported from South Georgia, the maritime Antarctic islands and Antarctic Peninsula. S. caespitosum is new to the western sub-Antarctic. Variations in morphology and secondary chemistry are provided, and the ecology and geographical distribution in the sub-Antarctic and Antarctic biomes are given for each taxon.  相似文献   

14.
Abiotic features of Antarctic terrestrial habitats, particularly low temperatures and limited availability of liquid water, strongly influence the ecophysiology and life histories of resident biota. However, while temperature regimes of a range of land microhabitats are reasonably well characterized, much less is known of patterns of soil water stress, as current technology does not allow measurement at the required scale. An alternative approach is to use the water status of individual organisms as a proxy for habitat water status and to sample over several years from a population to identify seasonal or long‐term patterns. This broad generalization for terrestrial invertebrates was tested on arthropods in the maritime Antarctic. We present analyses of a long‐term data set of body water content generated by monthly sampling for 8–11 years of seven species of soil arthropods (four species of Acari, two Collembola and one Diptera) on maritime Antarctic Signy Island, South Orkney Islands. In all species, there was considerable within‐ and between‐sample variability. Despite this, clear seasonal patterns were present in five species, particularly the two collembolans and a prostigmatid mite. Analyses of monthly water content trends across the entire study period identified several statistically significant trends of either increase or decrease in body water content, which we interpret in the context of regional climate change. The data further support the separation of the species into two groups as follows: firstly, the soft‐bodied Collembola and Prostigmata, with limited cuticular sclerotization, which are sensitive to changes in soil moisture and are potentially rapid sensors of microhabitat water status, secondly, more heavily sclerotized forms such as Cryptostigmata (=Oribatida) and Mesostigmata mites, which are much less sensitive and responsive to short‐term fluctuations in soil water availability. The significance of these findings is discussed and it is concluded that annual cycles of water content were driven by temperature, mediated via radiation and precipitation, and constituted reliable indicators of habitat moisture regimes. However, detailed ecophysiological studies are required on particular species before such information can be used to predict over long timescales.  相似文献   

15.
The diet of non-breeding male Antarctic fur seals Arctocephalus gazella was investigated at different localities of the Antarctic Peninsula (Cierva Point and Hope Bay), South Shetland Islands (Deception Island and Potter Peninsula) and the South Orkney Islands (Laurie Island), by the analysis of 438 scats collected from January to March 2000. The composition of the diet was diverse, with both pelagic and benthic-demersal prey represented in the samples. Antarctic krill Euphausia superba was the most frequent and numerous prey at all the study sites except at Cierva Point, followed by fish, penguins and cephalopods. Antarctic krill also predominated by mass, followed by either fish or penguins. Fish were the second most important prey by mass at the Antarctic Peninsula whereas penguins were the second most important prey by mass at the South Shetland and South Orkney Islands. Among fish, Pleuragramma antarcticum was the most important species in the diet of the Antarctic fur seals at the Antarctic Peninsula whereas Gymnoscopelus nicholsi predominated at the South Shetland and South Orkney Islands. The results are compared with previous studies, and the possibility of implementing monitoring studies on the distribution/abundance of myctophids and P. antarcticum based on the analysis of the diet of the Antarctic fur seal is considered.  相似文献   

16.
The Antarctic is considered to be a pristine environment relative to other regions of the Earth, but it is increasingly vulnerable to invasions by marine, freshwater and terrestrial non‐native species. The Antarctic Peninsula region (APR), which encompasses the Antarctic Peninsula, South Shetland Islands and South Orkney Islands, is by far the most invaded part of the Antarctica continent. The risk of introduction of invasive non‐native species to the APR is likely to increase with predicted increases in the intensity, diversity and distribution of human activities. Parties that are signatories to the Antarctic Treaty have called for regional assessments of non‐native species risk. In response, taxonomic and Antarctic experts undertook a horizon scanning exercise using expert opinion and consensus approaches to identify the species that are likely to present the highest risk to biodiversity and ecosystems within the APR over the next 10 years. One hundred and three species, currently absent in the APR, were identified as relevant for review, with 13 species identified as presenting a high risk of invading the APR. Marine invertebrates dominated the list of highest risk species, with flowering plants and terrestrial invertebrates also represented; however, vertebrate species were thought unlikely to establish in the APR within the 10 year timeframe. We recommend (a) the further development and application of biosecurity measures by all stakeholders active in the APR, including surveillance for species such as those identified during this horizon scanning exercise, and (b) use of this methodology across the other regions of Antarctica. Without the application of appropriate biosecurity measures, rates of introductions and invasions within the APR are likely to increase, resulting in negative consequences for the biodiversity of the whole continent, as introduced species establish and spread further due to climate change and increasing human activity.  相似文献   

17.
Christensenia gen. nov., C. blocki sp. nov., is described from Signy Island, South Orkney Islands, maritime Antarctic. The new species is identical with specimens that Stephenson (1932) determined as Marionina georgiana (Michaelsen, 1888), but differs from the type material of M. georgiana. The species M. georgiana (Michaelsen, 1888) is also placed in the new genus Christensenia, the main characteristics of which are: possession of sigmoid setae, and the presence of large numbers of small, hyaline, stick-like, anucleate lymphocytes. No other types of lymphocyte are observed. Oesophageal appendages and intestinal diverticulae are absent. Dorsal vessel originates in the clitellar region; blood is colourless. The anteseptal part of the nephridium consists of the funnel and a few canals, with the efferent duct arising postero-ventrally. Spermathecae are without diverticulae, entally connecting with the oesophagus. The known distribution of the genus is currently limited to terrestrial habitats in the sub- and maritime Antarctic. Received: 24 June 1996 / Accepted: 20 October 1996  相似文献   

18.
The pycnogonids of the Southern Ocean have been studied for almost two centuries and have played a key role in shaping previous biogeographic regions for the Antarctic benthos. The aim of this study was to assess the biogeographic patterns derived from the most current sample records of pycnogonids from the Southern Ocean and neighbouring areas. 332 species of pycnogonids from 1837 sample locations were analysed using 279 3° by 3° grid cells. We investigated richness patterns and the effect of sampling intensity at both local and regional scales, and used multivariate analysis of distribution patterns and species assemblages to define biogeographic trends. These analyses identified a distinct and isolated Antarctic pycnogonid shelf fauna which was different to that of the deep‐sea around Antarctica, the Sub‐Antarctic islands, South America or New Zealand. Within the Antarctic, we found the South Shetland Islands to be the most speciose region and a probable center of radiation for the pycnogonids. No latitudinal gradients in species richness were detected. We note that the distribution patterns observed are based upon classical taxonomy and discuss the potential for changes to these patterns with new insights from molecular techniques. We conclude that, even with the potential for cryptic species, the large‐scale biogeographic trends observed in the pycnogonids should hold true.  相似文献   

19.
Peter Convey 《Oecologia》1994,100(1-2):45-53
A comparison is made of the reproductive effort (RE), considered as the investment in sporophyte relative to gametophyte biomass, of eight species of moss occurring at sub-and maritime Antarctic sites. Six of the species showed smaller sporophytes and game-tophytes at the climatically more extreme maritime Antaretic sites and one species showed no size difference between regions. The remaining species, although showing no regional difference, showed some evidence of a reverse pattern, with higher altitude samples having greater biomass than lower altitude samples. Spore counts indicated a measure of compensation in maritime Antarctic samples, with no significant decrease in spore output in several species despite smaller sporophyte biomass. The relationship between sporophyte (S) and gametophyte (G) biomass within samples was described by an allometric curve (S=aG b ) which gave a better fit than a straight line for six species. This form of model allows comparisons of patterns of RE to be made between samples with non-or partially overlapping size distributions, even when the relationship involves size-dependence. An allometric curve was not appropriate for describing samples of one species (Andreaea regularis), and insufficient data were available to identify any relationship in Polytrichum alpinum. The exponent (b) differed between species, but there were no statistically significant differences between exponents from samples of the same species. Samples of two species could further be described by the same coefficient (a), indicating that they lie on the same curve. However, samples of three species from sub-Antarctic South Georgia gave significantly higher coefficients, indicating increased RE relative to maritime Antarctic populations.  相似文献   

20.
Gentoo penguins (Pygoscelis papua) are found across the Southern Ocean with a circumpolar distribution and notable genetic and morphological variation across their geographic range. Whether this geographic variation represents species‐level diversity has yet to be investigated in an integrative taxonomic framework. Here, we show that four distinct populations of gentoo penguins (Iles Kerguelen, Falkland Islands, South Georgia, and South Shetlands/Western Antarctic Peninsula) are genetically and morphologically distinct from one another. We present here a revised taxonomic treatment including formal nomenclatural changes. We suggest the designation of four species of gentoo penguin: P. papua in the Falkland Islands, P. ellsworthi in the South Shetland Islands/Western Antarctic Peninsula, P. taeniata in Iles Kerguelen, and a new gentoo species P. poncetii, described herein, in South Georgia. These findings of cryptic diversity add to many other such findings across the avian tree of life in recent years. Our results further highlight the importance of reassessing species boundaries as methodological advances are made, particularly for taxa of conservation concern. We recommend reassessment by the IUCN of each species, particularly P. taeniata and P. poncetii, which both show evidence of decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号