首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the expression of the protein product of the immediate early gene c-fos in the brains of female prairie voles (Microtus ochrogaster) in association with pregnancy and postparturient activities including maternal behavior, lactation and postpartum estrus. Fos expression was assessed in female voles that were late in pregnancy, nonpregnant or at one of three different times postpartum (0-8, 12-24, and 24-48 h, respectively). A significant increase in the number of cells displaying Fos immunoreactivity (Fos-ir) was observed during the 0-8 h and 12-24 h postpartum time periods in the accessory olfactory bulbs, medial preoptic area, hypothalamus (specifically, the supraoptic nucleus, ventro-medial hypothalamus, and paraventricular nucleus), lateral septum, bed nucleus of the stria terminalis, and primary somatosensory area of the brain. The number of Fos-ir cells decreased after 24 h postpartum. There were no significant changes in Fos-ir cell numbers in the primary olfactory bulbs, hippocampus, or caudate putamen. The neural activation of the medial preoptic area, accessory olfactory bulbs, hypothalamus, and bed nucleus is consistent with reports in rats of Fos induction associated with the onset of maternal behavior. In voles postpartum estrous behavior begins and ends 0-12 h after parturition. Maternal behavior, including lactation, is initiated at the same time but persists for several weeks. The highest Fos-ir cell numbers reported here coincide with the timing of postpartum estrous behavior in this species.  相似文献   

2.
Y Ueta  Y Hara  K Kitamura  K Kangawa  T Eto  Y Hattori  H Yamashita 《Peptides》2001,22(11):1817-1824
The effects of intracerebroventricular (icv) administration of adrenomedullin (AM) and proadrenomedullin NH2-terminal 20 peptide (PAMP) on the expression of Fos in the central nervous system (CNS) were examined in conscious rats, using immunohistochemistry. Fos-like immunoreactivity (LI) was detected in various brain areas of the rats, including the supraoptic nucleus, the paraventricular nucleus, the locus coeruleus, the area postrema and the nucleus of the tractus solitarius 90 min after icv administration of AM. Few cells with Fos-LI were found in the CNS 90 min after icv administration of saline. Fos-LI was also detected in the various hypothalamic areas after icv administration of PAMP. These results suggest that centrally administered AM and PAMP may cause physiological responses through the activation of a neural network in the hypothalamus and the brainstem.  相似文献   

3.
Cobalt protoporphyrin (CoPP) administered subcutaneously to adult male rats caused a marked reduction in the conversion of 5 alpha-androstane-3 beta-17 beta-diol (3 beta-adiol) to its main triol derivative (6 alpha-atriol) by homogenates of the pituitary but not of the prostate or brain (ventromedial hypothalamus and cortex). No effect in the brain was observed when this heme analogue was infused intracerebroventricularly. 3 beta-adiol hydroxylase, the enzyme responsible for the reaction and whose main function is thought to be the elimination of dihydrotestosterone and its metabolites from target tissues, was also inhibited by CoPP and SKF-525A added in vitro. The reaction was microsomal and dependent on NADPH. It is proposed that the lack of reciprocal elevation of luteinizing hormone in the face of the low testosterone levels observed following treatment with CoPP may be due, in part, to increased levels of androstanediols. These metabolites accumulate because of increased production from testosterone and decreased conversion to their triol derivatives in the pituitary.  相似文献   

4.
We trained rats to a regime of scheduled feeding, in which food was available for only 2 hr each day. After 10 days, rats were euthanized at defined times relative to food availability, and their brains were analyzed to map Fos expression in neuronal populations to test the hypothesis that some populations are activated by hunger whereas others are activated by satiety signals. Fos expression accompanied feeding in several hypothalamic and brainstem nuclei. Food ingestion was critical for Fos expression in noradrenergic and non-noradrenergic cells in the nucleus tractus solitarii and area postrema and in the supraoptic nucleus, as well as in melanocortin-containing cells of the arcuate nucleus. However, anticipation of food alone activated other neurons in the arcuate nucleus and in the lateral and ventromedial hypothalamus, including orexin neurons. Thus orexigenic populations are strongly and rapidly activated at the onset of food presentation, followed rapidly by activity in anorexigenic populations when food is ingested.  相似文献   

5.
6.
The present study was carried out to investigate whether the hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 (GLP-1) in chicks. To examine this, Fos expression in the chick hypothalamus were immunohistochemically detected after intracerebroventricular (ICV) injection of 30-pmol GLP-1. ICV injection of GLP-1 stimulated the expression of Fos-like immunoreactive (FLI) cells in the ventromedial hypothalamic nucleus (VMN). When 15-pmol GLP-1 was directly injected into the chick VMN, the chick's food intake was significantly decreased compared with the control treatment. Microinjection of GLP-1 into the (LHA) also inhibited feeding in chicks, although ICV injection of GLP-1 did not stimulate FLI expression in the brain area. These results suggest that VMN and some brain regions are involved in the anorexic effect of GLP-1 in chicks.  相似文献   

7.
8.
N Zisapel  I Nir  M Laudon 《FEBS letters》1988,232(1):172-176
The binding of 125I-melatonin to synaptosomes prepared from whole brains of male rats of the CD strain and from the brain, hypothalamus and striatum of male rats of the Sabra-Wistar strain was assessed throughout a 24 h period. The animals were maintained under a daily schedule of 14 h light (05:00-19:00 h) and 10 h darkness. In whole brain preparations the density of binding sites at 18:00 h was higher by about 70% than at 02:00 h with no variations in apparent affinity of the binding sites throughout the daily period. Specific binding of 125I-melatonin was found in both hypothalamus and striatum of the male rat with a distinct diurnal variation in binding site density in the hypothalamus only. The density of 125I-melatonin-binding sites in the hypothalamus was maximal between 10:00 and 18:00 h and dropped sharply after the lights went off. The apparent 125I-melatonin-binding affinities in these regions were constant and very similar to those in whole brain preparations. The daily variations in densities of 125I-melatonin-binding sites in discrete brain areas may represent a diurnal rhythmicity in the responsiveness of the neuroendocrine axis to melatonin.  相似文献   

9.
The distribution of angiotensinogen containing cells was determined in the brain of rats using immunocytochemistry. Specific angiotensinogen immunoreactivity is demonstrated both in glial cells and neurons throughout the brain, except the neocortical and cerebellar territories. Positive neurons are easily and invariably detected in female brains, and haphazardly in male brain (sex hormone dependent). Angiotensinogen immunoreactivity in male brain neurons can be induced by water deprivation or binephrectomy in some areas and particularly in paraventricular nuclei. Finally, the highest concentrations of positive neurons are found in the anterior and lateral hypothalamus, preoptic area, amygdala and some well known nuclei of the mesencephalon and the brainstem. Our results confirm the wide distribution of angiotensinogen mRNA in the brain reported recently by Lynch et al. (1987). Thus the demonstration of angiotensinogen in neurons and glial cells allows a greater understanding of the biochemical and physiological data in accordance with multiple brain renin angiotensin systems.  相似文献   

10.
Recent evidence indicates that the administration of inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant-like effects in animal models such as the forced swimming test (FST). However, the neural circuits involved in these effects are not yet known. Therefore, this study investigated the expression of Fos protein, a marker of neuronal activity, in the brain of rats submitted to FST and treated with the preferential nNOS inhibitor, 7-nitroindazole (7-NI), or with classical antidepressant drugs (Venlafaxine and Fluoxetine). Male Wistar rats were submitted to a forced swimming pretest (PT) and, immediately after, started receiving a sequence of three ip injections (0, 5, and 23 h after PT) of Fluoxetine (10 mg/kg), Venlafaxine (10 mg/kg), 7-NI (30 mg/kg) or respective vehicles. One hour after the last drug injection the animals were submitted to the test session, when immobility time was recorded. After the FST they were sacrificed and had their brains removed and processed for Fos immunohistochemistry. Independent group of non-stressed animals received the same drug treatments, or no treatment (naïve). 7-NI, Venlafaxine or Fluoxetine reduced immobility time in the FST, an antidepressant-like effect. None of the treatments induce significant changes in Fos expression per se. However, swimming stress induced significant increases in Fos expression in the following brain regions: medial prefrontal cortex, nucleus accumbens, locus coeruleus, raphe nuclei, striatum, hypothalamic nucleus, periaqueductal grey, amygdala, habenula, paraventricular nucleus of hypothalamus, and bed nucleus of stria terminalis. This effect was attenuated by 7-NI, Venlafaxine or Fluoxetine. These results show that 7-NI produces similar behavioral and neuronal activation effects to those of typical antidepressants, suggesting that these drugs share common neurobiological substrates.  相似文献   

11.
Immediate early genes (IEG) such as c‐Fos and Fos‐related antigens (FRA) have been used as markers of neuronal activation. In this study, we determined whether the expression of c‐Fos/FRAs is increased in the brains of adult male Acheta domesticus crickets following agonistic interactions. We looked for c‐Fos/FRA proteins in the brain of un‐fought, control male crickets and of dominant and subordinate male crickets sacrificed at different time periods following an agonistic interaction. Using immunoblot analysis, we found four different c‐Fos/FRA‐like proteins in the adult cricket brain. Continuous agonistic interaction increased c‐Fos/FRA protein expression in the brains of subordinate males compared to control and dominant males. In addition, direct electrical stimulation of the male cricket antennae increased c‐Fos/FRA‐like protein in the brain. We identified the specific brain regions that exhibit c‐Fos/FRA‐like immunoreactivity in crickets. We detected c‐Fos/FRA‐like cellular immunoreactivity in different functional regions of the adult brain including the pars intercerebralis, protocerebrum, deutocerebrum, and the cortex of the mushroom bodies. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Methamphetamine is a psychostimulant drug acting on central monoaminergic neurons to produce both acute psychomotor stimulation and long-lasting behavioral effects including addiction and psychosis. Drug discrimination procedures have been particularly useful in characterizing subjective effects of addictive drugs. In the present study, to identify potential anatomical substrates for the discriminative stimulus effects of methamphetamine, we investigated the drug discrimination-associated Fos expression in Sprague-Dawley rats trained to discriminate methamphetamine from saline under a two-lever fixed ratio 20 (FR-20) schedule of food reinforcement. The rats that fulfilled the criteria for learning the discrimination were anesthetized and perfused 2 h after the drug discrimination test, and Fos immunoreactivity was examined in 15 brain regions. Fos expression in the brains of rats that discriminate methamphetamine from saline was significantly increased in the nucleus accumbens (NAc) and the ventral tegmental area (VTA), but not in other areas including the cerebral cortex, caudate putamen, substantia nigra, hippocampus, amygdala and habenulla, as compared with the expression in control rats that were maintained under the FR-20 schedule. The present findings suggest a role for the VTA and NAc as possible neuronal substrates in the discriminative stimulus effects of methamphetamine.  相似文献   

13.
Cobalt protoporphyrin (CoPP) administered subcutaneously to adult male rats caused a marked reduction in the conversion of 5α-androstane-3β-17β-diol (3β-adiol) to its main triol derivative (6α-atriol) by homogenates of the pituitary but not of the prostate or brain (ventromedial hypothalamus and cortex). No effect in the brain was observed when this heme analogue was infused intracerebroventricularly. 3β-adiol hydroxylase, the enzyme responsible for the reaction and whose main function is thought to be the elimination of dihydrotestosterone and its metabolites from target tissues, was also inhibited by CoPP and SKF-525A added in vitro. The reaction was microsomal and dependent on NADPH. It is proposed that the lack of reciprocal elevation of luteinizing hormone in the face of the low testosterone levels observed following treatment with CoPP may be due, in part, to increased levels of androstanediols. These metabolites accumulate because of increased production from testosterone and decreased conversion to their triol derivatives in the pituitary.  相似文献   

14.
15.
Summary The distribution of angiotensinogen containing cells was determined in the brain of rats using immunocytochemistry. Specific angiotensinogen immunoreactivity is demonstrated both in glial cells and neurons throughout the brain, except the neocortical and cerebellar territories. Positive neurons are easily and invariably detected in female brains, and haphazardly in male brain (sex hormone dependent). Angiotensinogen immunoreactivity in male brain neurons can be induced by water deprivation or binephrectomy in some areas and particularly in paraventricular nuclei. Finally, the highest concentrations of positive neurons are found in the anterior and lateral hypothalamus, preoptic area, amygdala and some well known nuclei of the mesencephalon and the brainstem.Our results confirm the wide distribution of angiotensinogen mRNA in the brain reported recently by Lynch et al. (1987). Thus the demonstration of angiotensinogen in neurons and glial cells allows a greater understanding of the biochemical and physiological data in accordance with multiple brain renin angiotensin systems.  相似文献   

16.
Morphological studies on neuroglia   总被引:1,自引:0,他引:1  
Murabe  Y.  Sano  Y. 《Cell and tissue research》1983,229(1):85-95
Immunohistochemical studies with the use of the peroxidase-antiperoxidase (PAP) method revealed that "amoeboid microglial cells", in the brains of neonatal rats and "brain macrophages" in lesioned brains of adult rats react positively to an antiserum raised against macrophages. In brains of neonatal rats, "amoeboid microglial cells" stained by means of the PAP-method were observed in the corpus callosum, internal capsule, dorso-lateral region of the thalamus, subventricular zone of the lateral ventricle, and the subependymal layer of the ventricular system. These cellular elements were not detected in brains of rats aged 21 days or older. Resting microglial cells displaying a typical ramified structure were not specifically stained. Cells reacting positively to the macrophage antiserum appeared (i) in the cerebral cortex of adult rats following placement of a stab wound, or (ii) in the hippocampal formation after kainic acid-induced lesions; in the damaged areas immunoreactive cells exhibited the typical features of "brain macrophages". "Brain macrophages" and "amoeboid microglial cells" are considered to belong to the class of exudate macrophages derived from blood monocytes. Thus, elements of hematogenous origin do exist in the intact brain parenchyma of neonatal rats and in lesioned brains of adult rats. The relationship between brain macrophages and resting microglial cells is discussed.  相似文献   

17.
Neuronal activation of brain vagal-regulatory nuclei and gastric/duodenal enteric plexuses in response to insulin (2 U/kg, 2 h) hypoglycemia was studied in rats. Insulin hypoglycemia significantly induced Fos expression in the paraventricular nucleus of the hypothalamus, locus coeruleus, dorsal motor nucleus of the vagus (DMN), and nucleus tractus solitarii (NTS), as well as in the gastric/duodenal myenteric/submucosal plexuses. A substantial number of insulin hypoglycemia-activated DMN and NTS neurons were choline acetyltransferase and tyrosine hydroxylase positive, respectively, whereas the activated enteric neurons included NADPH- and vasoactive intestinal peptide neurons. The numbers of Fos-positive cells in each above-named brain nucleus or in the gastric/duodenal myenteric plexus of insulin-treated rats were negatively correlated with serum glucose levels and significantly increased when glucose levels were lower than 80 mg/dl. Acute bilateral cervical vagotomy did not influence insulin hypoglycemia-induced Fos induction in the brain vagal-regulatory nuclei but completely and partially prevented this response in the gastric and duodenal enteric plexuses, respectively. These results revealed that brain-gut neurons regulating vagal outflow to the stomach/duodenum are sensitively responsive to insulin hypoglycemia.  相似文献   

18.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains of normal adult rats and found to be widely distributed in extrahypothalamic areas (e.g., thalamus, amygdala, hippocampus, frontal cerbral cortex, striatum, midbrain, pons-medulla and cerebellum) at levels approximately 10% of the hypothalamus. Sephadex G-50 gel filtration reveals that CRF-like immunoreactivity in the hypothalamus coelutes with synthetic ovine CRF and is also present in the void volume. However, in the extrahypothalamic areas of the rat brain, only CRF-like immunoreactivity that coelutes with synthetic ovine CRF was detected. High performance liquid chromatography revealed equal amounts of immunoreactivity coeluting with CRF and methionine sulfoxide CRF in hypothalamic extracts.  相似文献   

19.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains and gastroenteropancreatic tract of normal rabbits. It was detected in the brain, with the highest concentration being found in the ventral hypothalamus. The distribution of immunoreactivity was much more limited in the rabbit brain than in the rat brain, with substantial amounts of peptide detected only in areas of close proximity to the hypothalamus, e.g., thalamus, preoptic area, midbrain and amygdala. In addition, the extrahypothalamic immunoreactivity was slightly retarded on Sephadex G-50 chromatography relative to rat CRF-like immunoreactivity and synthetic ovine CRF. No apparent CRF-like immunoreactivity was detected in boiling water extracts of lung, pancreas, duodenum or antrum. These data in conjunction with a previous report of void volume immunoreactivity on Sephadex G-50 only in the hypothalamus suggest that CRF is synthesized only in the hypothalamus and is not a member of the class of peptides found throughout the gastroenteropancreatic tract and the central nervous system.  相似文献   

20.
The present study examined the ability of clitoral stimulation (CLS) to induce conditioned place preference (CPP) and Fos protein in the brain. Ovariectomized, hormone-primed Long-Evans rats were randomly assigned to receive either distributed CLS (1 stimulation every 5 s for 1 min prior to being placed in one distinctive side of a nonbiased CPP box for 2 min, after which the cycle of stimulation and CPP exposure were repeated for 4 more cycles, totaling 60 stimulations) or continuous CLS (1 stimulation per second for 1 min with 2 min in one side of the CPP box, repeated for 4 more cycles, totaling 300 stimulations). Two days later, females were placed into the other side of the CPP box without prior stimulation. CPP was tested after 5 sequential exposures each of CLS and no stimulation. Females given distributed stimulation developed a significant CPP whereas females given continuous stimulation did not. CLS induced Fos in hypothalamic and limbic structures, including the nucleus accumbens, piriform cortex, arcuate nucleus, and dorsomedial portion of the ventromedial hypothalamus, compared to no stimulation. However, distributed CLS induced more Fos in the medial preoptic area than continuous CLS or no stimulation. In contrast, continuous CLS induced more Fos in the posteroventral medial amygdala compared to no stimulation. These data indicate that CLS induces a reward state in the rat and a pattern of Fos activation in regions of the brain that process genitosensory input, incentive salience, and reward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号