首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glycosylation and translocation of the simian rotavirus protein VP7, a resident ER protein, does not occur co-translationally in vivo. In pulse-chase experiments in COS cells, nonglycosylated VP7 was still detectable after a 25-min chase period, although the single glycosylation site was only 18 residues beyond the signal peptide cleavage site. After labeling, glycosylated and nonglycosylated VP7 was recovered in microsomes but the latter was sensitive to trypsin (i.e., the nascent protein became membrane associated) but most of it entered the ER posttranslationally because of a rate-limiting step early in translocation. In contrast with the simian protein, bovine VP7 was glycosylated and translocated rapidly. Thus, delayed translocation per se was not required for retention of VP7 in the ER. By constructing hybrid proteins, it was further shown that the signal peptide together with residues 64-111 of the simian protein caused delayed translocation. The same sequences were also necessary and sufficient for retention of simian VP7 in the ER. The data are consistent with the idea that certain proteins are inserted into the ER membrane in a loop configuration.  相似文献   

3.
Hen oviduct signal peptidase is an integral membrane protein   总被引:11,自引:0,他引:11  
Membrane preparations from rough endoplasmic reticulum of hen oviduct resemble those of dog pancreas in their capacity to translocate nascent secretory proteins into membrane vesicles present during cell-free protein synthesis. As with the dog membranes, the precursor form of human placental lactogen is transported into the vesicles and processed to the native secretory form by an associated "signal peptidase." The oviduct microsomal membranes glycosylate nascent ovomucoid and ovalbumin in vitro. Attempts to extract the signal peptidase from these membrane vesicles revealed that it is one of the least easily solubilized proteins. A protocol for enrichment of signal peptidase was developed that took advantage of its tight association with these vesicles. These studies indicate that the enzyme has the characteristics of an integral membrane protein which remains active in membrane vesicles even after extraction with low concentrations of detergent that do not dissolve the lipid bilayer or after disruption of membrane vesicles in ice-cold 0.1 M Na2CO3, pH 11.5 (Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P.B. (1982) J. Cell Biol. 93, 97-102), which releases the majority of membrane-associated proteins. Solubilization requires concentrations of nondenaturing detergents that totally dissolve the lipid bilayer. The detergent-solubilized enzyme retains the activity and the characteristic specificity of the membrane-bound form.  相似文献   

4.
Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection.  相似文献   

5.
The glycoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove absorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils.  相似文献   

6.
Rotavirus VP7 is a membrane-associated protein of the endoplasmic reticulum (ER). It is the product of rotavirus gene 9 which potentially encodes a protein of 326 amino acids that contains two amino terminal hydrophobic domains, h1 and h2, each preceded by an initiation codon. Comparison of the size of products derived from altered genes containing coding sequences for both h1 and h2 with those lacking the h1 sequence ('dhl' mutants), indicates that initiation takes place at M30 immediately preceding h2 (residues F32 to L48) and that h2 is cleaved, confirming the studies of others (Stirzaker, S.C., P.L. Whitfeld, D.L. Christie, A.R. Bellamy, and G.W. Both. 1987. J. Cell Biol. 105:2897-2903). Our previous work had shown that deletions in the carboxy end of h2, extending to amino acid 61 in the open reading frame, resulted in secretion of VP7. The region from amino acid number 51-61, present in wild-type VP7 but missing in the secreted mutant delta 47-61, was thus implicated to have a role in ER retention. To test this, a series of chimeric genes were constructed by fusing the first 63 codons of wild-type VP7, delta 1-14 or delta 51-61/dhl, to the mouse salivary alpha-amylase gene, a secretory protein, such that the fusion junction was located at the exact mature terminus of amylase. The chimeric proteins VP7(63)/amylase, delta 1-14(63)/amylase and delta 51-61(63)/dhl/amylase were secreted when expressed in cells and the h2 domain was cleaved when mRNA was translated in vitro. These results imply that the sequence 51-61 is necessary but not sufficient for ER retention. When a second series of VP7/amylase chimera were constructed extending the VP7 contribution to amino acid 111, the product expressed by delta 1-14(111)/amylase was not secreted whereas that of delta 47-61(111)/amylase was. Significantly, the intracellular delta 1-14(111)/amylase product exhibited an amylase enzymatic specific activity that was similar to that of the wild-type amylase product. We conclude that two regions of VP7 mediate its retention in the ER, the first lies within the sequence 51-61 and the second within the sequence 62-111, which contains the glycosylation site for VP7. Both regions are necessary for retention, though neither is sufficient alone.  相似文献   

7.
R Gajardo  P Vende  D Poncet    J Cohen 《Journal of virology》1997,71(3):2211-2216
Rotavirus maturation and stability of the outer capsid are calcium-dependent processes. It has been shown previously that the concentration of Ca2+-solubilizing outer capsid proteins from rotavirus particles is dependent on the virus strain. This property of viral particles has been associated with the gene coding for VP7 (gene 9). In this study the correlation between VP7 and resistance to low [Ca2+] was confirmed by analyzing the origin of gene 9 from reassortant viruses prepared under the selective pressure of low [Ca2+]. After chemical mutagenesis, we selected mutant viruses of the bovine strain RF that are more resistant to low [Ca2+]. The genes coding for the VP7 proteins of these independent mutants have been sequenced. Sequence analysis confirmed that these mutants are independent and revealed that all mutant VP7 proteins have proline 75 changed to leucine and have an outer capsid that solubilized at low [Ca2+]. The mutation of proline 279 to serine is found in all but two mutants. The phenotype of mutants having a single proline change can be distinguished from the phenotype of mutants having two proline changes. Sequence analysis showed that position 75 is in a region (amino acids 65 to 78) of great variability and that proline 75 is present in most of the bovine strains. In contrast, proline 279 is in a conserved region and is conserved in all the VP7 sequences in data banks. This region is rich in oxygenated residues that are correctly allocated in the metal-coordinating positions of the Ca2+-binding EF-hand structure pattern, suggesting that this region is important in the Ca2+ binding of VP7.  相似文献   

8.
Rotavirus VP7 is a glycoprotein that forms the viral capsid outerlayer and is essential to the correct assembly of triple-layered rotavirus-like particles (RLPs). In this work, a novel purification strategy was designed to allow obtaining highly pure monomeric VP7 required for the RLPs in vitro assembly. VP7 production kinetics in baculovirus-insect cells at cell concentration at infection (CCI) of 1x10(6)cellsmL(-1) was compared in terms of VP7/glycoprotein 64 (gp64) ratio at different multiplicity of infection (MOI). The best productivity was achieved at MOI of 0.1plaque forming unit (pfu)cell(-1) and time of harvest of 80h post-infection. After preliminary clarification steps, the proteins eluted from Concanavalin A were concentrated and loaded onto size exclusion chromatography. The polishing step was anion exchange chromatography with Mono Q. The high resolution of this column resulted in separation of monomers from dimers of VP7. Overall, the purification protocol yielded high level of purity (>90%). Purified VP7 was characterized by MALDI-TOF mass spectrometry and SDS-capillary gel electrophoresis. The MW and apparent MW were determined as 31.6 and 39kDa, respectively, confirming the efficacy of the proposed purification strategy that now enables RLPs assembly studies.  相似文献   

9.
A protein of 110,000 MW connects actin filaments to the plasma membrane in microvilli of intestinal epithelial cells. In the present study four independent lines of evidence suggest that the 110K protein is directly bound to the lipid bilayer. The solubilization of the 110K protein requires detergents and removal of detergent after solubilization results in aggregation. The 110K protein partitions into the detergent phase in Triton X-114 solutions. It is selectively incorporated into liposomes. It is specifically labeled with the hydrophobic probe 14C-phenylisothiocyanate. In addition we present a purification scheme for the 110K protein in milligram amounts. This represents the simplest system of membrane to filament attachment, in which an integral membrane protein is also a cytoskeletal protein.  相似文献   

10.
Rotavirus infectivity is dependent on the proteolytic cleavage of the VP4 spike protein into VP8* and VP5* proteins. Proteolytically activated virus, as well as expressed VP5*, permeabilizes membranes, suggesting that cleavage exposes a membrane-interactive domain of VP5* which effects rapid viral entry. The VP5* protein contains a single long hydrophobic domain (VP5*-HD, residues 385 to 404) at an internal site. In order to address the role of the VP5*-HD in permeabilizing cellular membranes, we analyzed the entry of o-nitrophenyl-beta-D-galactopyranoside (ONPG) into cells induced to express VP5* or mutated VP5* polypeptides. Following IPTG (isopropyl-beta-D-thiogalactopyranoside) induction, VP5* and VP5* truncations containing the VP5*-HD permeabilized cells to the entry and cleavage of ONPG, while VP8* and control proteins had no effect on cellular permeability. Expression of VP5* deletions containing residues 265 to 474 or 265 to 404 permeabilized cells; however, C-terminal truncations which remove the conserved GGA (residues 399 to 401) within the HD abolished membrane permeability. Site-directed mutagenesis of the VP5-HD further demonstrated a requirement for residues within the HD for VP5*-induced membrane permeability. Functional analysis of mutant VP5*s indicate that conserved glycines within the HD are required and suggest that a random coiled structure rather than the strictly hydrophobic character of the domain is required for permeability. Expressed VP5* did not alter bacterial growth kinetics or lyse bacteria following induction. Instead, VP5*-mediated size-selective membrane permeability, releasing 376-Da carboxyfluorescein but not 4-kDa fluorescein isothiocyanate-dextran from preloaded liposomes. These findings suggest that the fundamental role for VP5* in the rotavirus entry process may be to expose triple-layered particles to low [Ca](i), which uncoats the virus, rather than to effect the detergent-like lysis of early endosomal membranes.  相似文献   

11.
Rotavirus, a non-enveloped reovirus, buds into the rough endoplasmic reticulum and transiently acquires a membrane. The structural glycoprotein, VP7, a 38-kD integral membrane protein of the endoplasmic reticulum (ER), presumably transfers to virus in this process. The gene for VP7 potentially encodes a protein of 326 amino acids which has two tandem hydrophobic domains at the NH2-terminal, each preceded by an in-frame ATG codon. A series of deletion mutants constructed from a full-length cDNA clone of the Simian 11 rotavirus VP7 gene were expressed in COS 7 cells. Products from wild-type, and mutants which did not affect the second hydrophobic domain of VP7, were localized by immunofluorescence to elements of the ER only. However, deletions affecting the second hydrophobic domain (mutants 42-61, 43-61, 47-61) showed immunofluorescent localization of VP7 which coincided with that of wheat germ agglutinin, indicating transport to the Golgi apparatus. Immunoprecipitable wild-type protein, or an altered protein lacking the first hydrophobic sequence, remained intracellular and endo-beta-N-acetylglucosaminidase H sensitive. In contrast, products of mutants 42-61, 43-61, and 47-61 were transported from the ER, and secreted. Glycosylation of the secreted molecules was inhibited by tunicamycin, resistant to endo-beta-N-acetylglucosaminidase H digestion and therefore of the N-linked complex type. An unglycosylated version of VP7 was also secreted. We suggest that the second hydrophobic domain contributes to a positive signal for ER location and a membrane anchor function. Secretion of the mutant glycoprotein implies that transport can be constitutive with the destination being dictated by an overriding compartmentalization signal.  相似文献   

12.
We identified the Drosophila melanogaster Signal peptide peptidase gene (Spp) that encodes a multipass transmembrane aspartyl protease. Drosophila SPP is homologous to the human signal peptide peptidase (SPP) and is distantly related to the presenilins. We show that, like human SPP, Drosophila SPP can proteolyze a model signal peptide and is sensitive to an SPP protease inhibitor and that it localizes to the endoplasmic reticulum. Expression of Drosophila SPP was first apparent at germ band extension, and in late embryos it was robust in the salivary glands, proventriculus, and tracheae. Flies bearing mutations in conserved residues or carrying deficiencies for the Spp gene had defective tracheae and died as larvae.  相似文献   

13.
14.
The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection.  相似文献   

15.
16.
Zeng W  Keegstra K 《Planta》2008,228(5):823-838
Cellulose synthase-like proteins in the D family share high levels of sequence identity with the cellulose synthase proteins and also contain the processive beta-glycosyltransferase motifs conserved among all members of the cellulose synthase superfamily. Consequently, it has been hypothesized that members of the D family function as either cellulose synthases or glycan synthases involved in the formation of matrix polysaccharides. As a prelude to understanding the function of proteins in the D family, we sought to determine where they are located in the cell. A polyclonal antibody against a peptide located at the N-terminus of the Arabidopsis D2 cellulose synthase-like protein was generated and purified. After resolving Golgi vesicles from plasma membranes using endomembrane purification techniques including two-phase partitioning and sucrose density gradient centrifugation, we used antibodies against known proteins and marker enzyme assays to characterize the various membrane preparations. The Arabidopsis cellulose synthase-like D2 protein was found mostly in a fraction that was enriched with Golgi membranes. In addition, versions of the Arabidopsis cellulose synthase-like D2 proteins tagged with a green fluorescent protein was observed to co-localize with a DsRed-tagged Golgi marker protein, the rat alpha-2,6-sialyltransferase. Therefore, we postulate that the majority of Arabidopsis cellulose synthase-like D proteins, under our experimental conditions, are likely located at the Golgi membranes. Furthermore, protease digestion of Golgi-rich vesicles revealed almost complete loss of reaction with the antibodies, even without detergent treatment of the Golgi vesicles. Therefore, the N-terminus of the Arabidopsis cellulose synthase-like D2 protein likely faces the cytosol. Combining this observation with the transmembrane domain predictions, we postulate that the large hydrophilic domain of this protein also faces the cytosol.  相似文献   

17.
18.
A complete set of chimeras was made between the lysosomal membrane glycoprotein LEP100 and the plasma membrane-directed vesicular stomatitis virus G protein, combining a glycosylated lumenal or ectodomain, a single transmembrane domain, and a cytosolic carboxyl-terminal domain. These chimeras, the parent molecules, and a truncated form of LEP100 lacking the transmembrane and cytosolic domains were expressed in mouse L cells. Only LEP100 and chimeras that included the cytosolic 11 amino acid carboxyl terminus of LEP100 were targeted to lysosomes. The other chimeras accumulated in the plasma membrane, and truncated LEP100 was secreted. Chimeras that included the extracellular domain of vesicular stomatitis G protein and the carboxyl terminus of LEP100 were targeted to lysosomes and very rapidly degraded. Therefore, in chimera-expressing cells, virtually all the chimeric molecules were newly synthesized and still in the biosynthesis and lysosomal targeting pathways. The behavior of one of these chimeras was studied in detail. After its processing in the Golgi apparatus, the chimera entered the plasma membrane/endosome compartment and rapidly cycled between the plasma membrane and endosomes before going to lysosomes. In pulse-expression experiments, a large population of chimeric molecules was observed to appear transiently in the plasma membrane by immunofluorescence microscopy. Soon after protein synthesis was inhibited, this surface population disappeared. When lysosomal proteolysis was inhibited, chimeric molecules accumulated in lysosomes. These data suggest that the plasma membrane/early endosome compartment is on the pathway to the lysosomal membrane. This explains why mutations that block endocytosis result in the accumulation of lysosomal membrane proteins in the plasma membrane.  相似文献   

19.
Watanabe S  Imai M  Ohara Y  Odagiri T 《Journal of virology》2003,77(19):10630-10637
A bicistronic mRNA transcribed from the influenza B virus RNA segment 7 encodes two viral proteins, matrix protein M1 and uncharacterized small protein BM2. In the present study, we focused on the cytoplasmic transport and cellular membrane association of BM2. Immunofluorescence studies of virus-infected cells indicated that BM2 accumulated at the Golgi apparatus immediately after synthesis and then was transported to the plasma membrane through the trans-Golgi network. Localization of a set of BM2 deletion mutants revealed that the N-terminal half of BM2 (residues 2 to 50) was crucial for its transport; in particular, the deletion of residues 2 to 23, deduced to be a transmembrane domain, resulted in diffused distribution of the protein throughout the entire cell. Sucrose gradient flotation and biochemical analyses of the membrane showed that BM2 was tightly associated with cellular membranes as an integral membrane protein. Oligomerization of BM2 was demonstrated by coprecipitation of differentially epitope-tagged BM2 proteins. Taken together, these results strongly suggest that BM2 is integrated into the plasma membrane at the N-terminal hydrophobic domain as fourth membrane protein, in addition to hemagglutinin, neuraminidase, and NB, of the influenza B virus.  相似文献   

20.
In yeast, there are at least two vesicle populations upon ER (endoplasmic reticulum) exit, one containing Gap1p (general aminoacid permease) and a glycosylated alpha-factor, gpalphaF (glycosylated proalpha-factor), and the other containing GPI (glycosylphosphatidylinositol)-anchored proteins, Gas1p (glycophospholipid-anchored surface protein) and Yps1p. We attempted to identify sorting determinants for this protein sorting event in the ER. We found that mutant Gas1 proteins that lack a GPI anchor and/or S/T region (serine- and threonine-rich region), two common characteristic features conserved among yeast GPI-anchored proteins, were still sorted away from Gap1p-containing vesicles. Furthermore, a mutant glycosylated alpha-factor, gpalphaGPI, which contains both the GPI anchor and S/T region from Gas1p, still entered Gap1p-containing vesicles, demonstrating that these conserved characteristics do not prevent proteins from entering Gap1p-containing vesicles. gpalphaF showed severely reduced budding efficiency in the absence of its ER exit receptor Erv29p, and this residual budding product no longer entered Gap1p-containing vesicles. These results suggest that the interaction of gpalphaF with Erv29p is essential for sorting into Gap1p-containing vesicles. We compared the detergent solubility of Gas1p and the gpalphaGPI in the ER with that in ER-derived vesicles. Both GPI-anchored proteins similarly partitioned into the DRM (detergent-resistant membrane) in the ER. Based on the fact that they entered different ER-derived vesicles, we conclude that DRM partitioning of GPI-anchored proteins is not the dominant determinant of protein sorting upon ER exit. Interestingly, upon incorporation into the ER-derived vesicles, gpalphaGPI was no longer detergent-insoluble, in contrast with the persistent detergent insolubility of Gas1p in the ER-derived vesicles. We present different explanations for the different behaviours of GPI-anchored proteins in distinct ER-derived vesicle populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号