首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The species richness of 109 amphi-Pacific disjunct genera was examined in eastern Asia and North America. Although the entire flora of eastern Asia contains approximately one-third more species than that of North America, the difference in species richness among disjunct taxa is less. When woody and herbaceous genera are considered separately, the former exhibit a strong diversity bias favouring eastern Asia whereas there is no significant difference in diversity between continents among herbaceous genera. This result is not due to habitat differences between woody and herbaceous genera, because the disjunct herbs inhabit primarily moist forests and woodlands. This result is also not related to relative phylogenetic advancement, even though older major lineages of plants tend to have a predominance of woody taxa. Woody genera are distributed in lower latitudes than herbaceous genera on both continents, and both woody and herbaceous genera are distributed in lower latitudes in eastern Asia than in North America. The North American temperate flora is primarily a relict of a flora form 7 more widespread throughout the Northern Hemisphere. Contemporary patterns of diversity suggest that the effects of climate changes in the late Tertiary were less severe in eastern Asia and promoted diversification, but were more severe in North America and may have caused widespread extinction. The difference in the effect of climate change on diversity in herbaceous and woody lineages reflects the different ecological relationships of species having these contrasting life forms. Clearly, the contemporary floras of eastern Asia and North America bear the imprint of history and emphasize the important interface between ecological relationships and evolutionary responses.  相似文献   

2.
The diversity of a region reflects both local diversity and the turnover of species (beta diversity) between areas. The angiosperm flora of eastern Asia (EAS) is roughly twice as rich as that of eastern North America (ENA), in spite of similar area and climate. Using province/state‐level angiosperm species floras, we calculated beta diversity as the slope of the relationship between the log of species similarity (S ) and either geographic distance or difference in climate. Distance‐based beta diversity was 2.6 times greater in the north–south direction in EAS than in ENA and 3.3 times greater in the east–west direction. When ln S was related to distance and climate difference in multiple regressions, both distance and climate PC1 were significant effects in the north–south direction, but only geographic distance had a significant, unique influence in the east–west direction. The general predominance of distance over environment in beta diversity suggests that history and geography have had a strong influence on the regional diversity of these temperate floras.  相似文献   

3.
Distributions of exotic plants in eastern Asia and North America   总被引:3,自引:0,他引:3  
Guo Q  Qian H  Ricklefs RE  Xi W 《Ecology letters》2006,9(7):827-834
Although some plant traits have been linked to invasion success, the possible effects of regional factors, such as diversity, habitat suitability, and human activity are not well understood. Each of these mechanisms predicts a different pattern of distribution at the regional scale. Thus, where climate and soils are similar, predictions based on regional hypotheses for invasion success can be tested by comparisons of distributions in the source and receiving regions. Here, we analyse the native and alien geographic ranges of all 1567 plant species that have been introduced between eastern Asia and North America or have been introduced to both regions from elsewhere. The results reveal correlations between the spread of exotics and both the native species richness and transportation networks of recipient regions. This suggests that both species interactions and human-aided dispersal influence exotic distributions, although further work on the relative importance of these processes is needed.  相似文献   

4.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

5.
Taxonomic diversity of vascular plants (ferns, gymnosperms and angiosperms) was compared between eastern Asia and North America. Eastern Asia has significantly higher species richness in all three classes but the difference was greatest in ferns and least in angiosperms. Differences in taxonomic treatments between the two continents are not likely contributors to these patterns. The relationship of regional to global species richness across the three plant classes suggested that diversity patterns were relatively homogeneous at three taxonomic levels. Thus, differences in species richness are established at the family level and are therefore relatively old. The previously noted fact that eastern Asia has a higher proportion of primitive taxa was shown by analyses both among and within plant classes. Diversity patterns across three taxonomic levels (i.e. family, genus and species) of the three classes may reflect the relative historical positions of the two continents (following continental drift) to the centre(s) of their origin, neighbouring land masses, differential speciation/extinction rates, and switches in dominance levels associated with climate change (including glaciation), as well as reproductive/dispersal mechanisms of the three plant classes.  相似文献   

6.
Global diversity of island floras from a macroecological perspective   总被引:1,自引:0,他引:1  
Islands harbour a significant portion of all plant species worldwide. Their biota are often characterized by narrow distributions and are particularly susceptible to biological invasions and climate change. To date, the global richness pattern of islands is only poorly documented and factors causing differences in species numbers remain controversial. Here, we present the first global analysis of 488 island and 970 mainland floras. We test the relationship between island characteristics (area, isolation, topography, climate and geology) and species richness using traditional and spatial models. Area is the strongest determinant of island species numbers ( R 2 = 0.66) but a weaker predictor for mainlands ( R 2 = 0.25). Multivariate analyses reveal that all investigated variables significantly contribute to insular species richness with area being the strongest followed by isolation, temperature and precipitation with about equally strong effects. Elevation and island geology show relatively weak yet significant effects. Together these variables account for 85% of the global variation in species richness.  相似文献   

7.
The distribution of diversity along latitudinal and elevation gradients, and the coupling of this phenomenon with climate, is a pattern long recognized in ecology. Hypothesizing that climate change may have altered this pattern over time, we investigated whether the aggregate of reported northward shifts of bird ranges in North America is now detectable in community‐level indices such as richness and diversity. Here, we report that bird diversity in North America increased and shifted northward between 1966 and 2010. This change in the relationship of diversity to the latitudinal gradient is primarily influenced by range expansions of species that winter in the eastern United States as opposed to species which migrate to this area from wintering grounds in the tropics. This increase in diversity and its northward expansion is best explained by an increase in regional prebreeding season temperature over the past 44 years.  相似文献   

8.
The taxonomic richness of seed plants at different taxonomic levels was compared between temperate East Asia and North America at both continental and semi-continental scales. In each comparison, land area and latitude range were adjusted to a comparable level between the two continental regions. East Asia is significantly more diverse than North America. In general, differences in taxonomic diversity arise at and below the genus level. At the continental scale, East Asia has 1.3 and 1.5 times as many genera and species, respectively, as North America. The northern part of East Asia has 1.1 times as many species as the northern part of North America. At the genus level, the northern part of East Asia is less diverse than the northern part of North America by a factor of 0.94. This pattern indicates that the diversity bias between the two continental regions results from the flora of southern East Asia. The diversity differences between East Asia and North America are not homogenously distributed across different plant groups. At the species level, East Asia had significantly more species than expected in magnoliids, alismatids, Liliidae, ranunculids, and rosids and had significantly less species in the Commelinidae, Caryophyllidae, and euasterids than North America.  相似文献   

9.
Aim This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location East Asia from the Arctic to tropical regions, an area crossing over 50° of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods East Asia is divided into forty‐five geographical regions. Based on the similarity of their world‐wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50°‐long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10°. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty‐five regional floras. Results Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi‐Pacific tropical, palaeotropical, tropical Asia–tropical Australia, tropical Asia–tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20°N and for c. 0% at latitude 55–60°N. In contrast, temperate genera (including holarctic, eastern Asia–North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55–60°N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55–60°N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions The large‐scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.  相似文献   

10.
Aim Understanding the history of the mesic‐adapted plant species of eastern British Columbia and northern Idaho, disjunct from their main coastal distribution, may suggest how biotas reorganize in the face of climate change and dispersal barriers. For different species, current evidence supports establishment of the disjunction via an inland glacial refugium, via recent dispersal from the coast, or via a combination of both. In this study, the modern distributions of the coastal‐disjunct vascular plants are analysed with respect to modern climate to examine how refugia and/or dispersal limitation control regional patterns in species richness. Location North‐west North America. Methods The distributions of nine tree and 58 understorey species with a coastal‐disjunct pattern were compiled on a 50‐km grid. The relationship between species richness and an estimate of available moisture was calculated separately for formerly glaciated and unglaciated portions of the coastal and inland regions. Growth habit and dispersal mode were assessed as possible explanatory variables for species distributions. Results Species richness shows a strong relationship to climate in coastal‐unglaciated areas but no relationship to climate in inland‐glaciated areas. In inland‐glaciated areas, richness is c. 70% lower than that expected from climate. Species with animal‐dispersed seeds occupy a larger portion of coastal and inland regions than species with less dispersal potential. Main conclusions Modern patterns of diversity are consistent with both refugia and dispersal processes in establishing the coastal‐disjunct pattern. The inland glacial refugium is marked by locally high diversity and several co‐distributed endemics. In the inland‐glaciated area, dispersal limitation has constrained diversity despite the nearby refugia. Onset of mesic climate within only the last 3000 years and the low dispersal capacity of many species in the refugium may explain this pattern. This study suggests that vascular plant species will face significant challenges responding to climate change on fragmented landscapes.  相似文献   

11.
For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55-52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44-47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants.  相似文献   

12.
Aim To understand the similarities and differences between the taiga floras of far north‐eastern Asia and north‐western North America in the light of their Tertiary and Quaternary histories. Does the taiga flora follow the tundra pattern (Asian–American commonality of species as a result of continuity through the Quaternary), the temperate forest pattern (distinct species because of late Tertiary disjunction), a combination of these two patterns, or some pattern unique to the taiga? Location The taiga regions of interior Alaska and the Yukon in North America (the ‘Alaskan taiga’), and the Kolyma and eastern Indigirka River basins in Russia (the ‘Kolyma taiga’). The study areas include both forested and unforested habitats below elevational treeline. The two regions have similar climate and topography and were linked via the Bering Land Bridge in the Tertiary and for several extended periods during Quaternary cold periods. Methods Systematic comparison of the vascular floras of the two regions from published sources; and review of palaeoecological literature for the region. Results Of the 796 species found in the study areas, 27% occur only in the Alaskan taiga, 35% occur only in the Kolyma taiga, and 38% occur in both the regions. The following subsets of species show a high proportion of species in common between the study areas (subsets are not mutually exclusive): plants that occur on the tundra and the taiga, non‐flowering plants, abundant taiga understory plants, and wetland and aquatic plants. A lower proportion of shared plants was noted for warm, south‐facing steppe communities. No tree species are common to both areas. Main conclusions The Bering Strait region in the Quaternary has acted as a biogeographical filter for taiga plants. Significant divergence between northeast Asia and northwest North America has developed among the more southerly ranging fraction of the flora (e.g. trees), while the more cosmopolitan and the most cold‐adapted elements of the taiga flora are common to both areas. Many plants in the former group have been disjunct between Asia and North America for millions of years, while many plants in the latter group have probably maintained continuity between the study areas via the Bering Land Bridge through much of the late Tertiary and Quaternary periods. Repeated extirpation of the less cold‐adapted species from both study areas during Pleistocene cold periods has probably enhanced floristic differences between the two regions.  相似文献   

13.
H. J. B. Birks 《Ecography》1996,19(3):332-340
The richness of Norwegian mountain plants in 75 grid squares is mapped from published distributional data for 109 species. Eleven explanatory variables representing bedrock geology, geography and topography, climate, and history (relative abundance of unglaciated areas) Tor each square are used in multiple regression analysis with associated Monte Carlo permutation tests to find statistically significant predictor variables for species richness. The variance in richness explained by the four major groups or explanatory variables is established by (partial) multiple regression analysis in which the groups of predictors are entered in different orders. The variance in species richness explained by the predictor variables is partitioned into four independent components. A predictive model for species richness using partial least squares regression and all explanatory variables has a coefficient of determination (R2) of 0.79. The statistical results consistently show that species-richness patterns are well explained by modern-day factors such as climate, geology, elevation, and geography without recourse to historical variables. The nunatak hypothesis of plant survival on unglaciated areas within Norway does not explain the observed richness patterns when modern ecological factors are considered first. The nunatak hypothesis thus appears to be redundant, a view supported by recent palaeobotanical. biosystematical, and evolutionary studies.  相似文献   

14.
Aim  Assessment of cross-continental similarities and differences in climatic limiting values for deciduous tree species and of the possible deterministic influence of past and present climatic differences on the modern tree flora in two regions.
Location  The deciduous forest regions of western Eurasia and eastern North America.
Methods  Based on species distribution data (range maps) and climate site data, the realized climatic niches of 137 deciduous tree species from the two regions were quantified using climatic envelopes. To compare these envelopes on the two continents, a hierarchical cluster analysis was performed, and principal components analysis was used to check cluster consistency.
Results  Significant differences do exist for upper limits of winter temperatures and for lower limits of summer temperatures between Western Eurasia and eastern North America. Lower limits for the annual water balance also appear different, suggesting that the deciduous trees may be more drought-tolerant in western Eurasia than in eastern North America. Climatic range types generated by the cluster analysis can be characterized, according to the distribution of the species, as boreal-temperate, northern temperate, temperate, southern temperate, and Appalachian. Five of the eight clusters contain trees from both regions, but three groups consist only of American species that have no European counterparts.
Main conclusions  Differences in temperature limitations can be explained by location on the east versus west side of the continents and by the almost complete lack of warm moist areas in western Eurasia. The difference in drought tolerance, on the other hand, is more likely to be the product of a deterministic sorting process that occurred during the Plio-Pleistocene.  相似文献   

15.
With increasing availability of plant distribution data, the information about global plant diversity is improving rapidly. Recently, Ulloa Ulloa et al. (2017) presented the first comprehensive overview of the native vascular flora of the Americas, yielding a total count of 124,993 native species. Of these, 51,241 occur in North America and 82,052 in South America. By combining these data with the information in the Global Naturalized Alien Flora (GloNAF) database of naturalized alien floras, we point out that for a complete picture of the regional and continental plant richness, the naturalized alien species need to be considered. Ignoring this novel component of regional floras can lead to an inaccurate picture of overall change in biodiversity in the Anthropocene. We show that North and South America might face contrasting challenges in terms of potential threats to biodiversity posed by alien plant species, because of the different past and present dynamics of invasions and predictions of future development. In total, there are 7,042 naturalized alien plants occurring in the Americas, with 6,122 recorded in North America and 2,677 in South America; if only introductions from other continents are considered additions to the native continental flora make up 6.9 and 1.4 %, respectively. Nevertheless, predictions of naturalized plant trajectories based on global trade dynamics and climate change suggest that considerable increases in naturalized plant numbers are expected in the next 20 years for emerging South American economies, which could reverse the present state.  相似文献   

16.
Slow response of plant species richness to habitat loss and fragmentation   总被引:13,自引:0,他引:13  
We examined the response of vascular plant species richness to long-term habitat loss and fragmentation of Estonian calcareous grasslands (alvars). The current number of habitat specialist species in 35 alvars was not explained by their current areas and connectivities but it was explained by their areas and connectivities 70 years ago ( R 2 = 0.27). We estimated the magnitude of extinction debt in local communities by assuming an equilibrium species richness in 14 alvars that had lost only a small amount of area and by applying this model to the remaining alvars, in which the average area has declined from 3.64 km2 in the 1930s to 0.21 km2 at present. The extinction debt estimated for individual alvars was around 40% of their current species number. Our conclusions are applicable to temperate grasslands in general, which have lost much area because of agricultural intensification and cessation of traditional management.  相似文献   

17.
Speciation is the process that ultimately generates species richness. However, the time required for speciation to build up diversity in a region is rarely considered as an explanation for patterns of species richness. We explored this "time-for-speciation effect" on patterns of species richness in emydid turtles. Emydids show a striking pattern of high species richness in eastern North America (especially the southeast) and low diversity in other regions. At the continental scale, species richness is positively correlated with the amount of time emydids have been present and speciating in each region, with eastern North America being the ancestral region. Within eastern North America, higher regional species richness in the southeast is associated with smaller geographic range sizes and not greater local species richness in southern communities. We suggest that these patterns of geographic range size variation and local and regional species richness in eastern North America are caused by glaciation, allopatric speciation, and the time-for-speciation effect. We propose that allopatric speciation can simultaneously decrease geographic range size and increase regional diversity without increasing local diversity and that geographic range size can determine the relationship between alpha, beta, and gamma diversity. The time-for-speciation effect may act through a variety of processes at different spatial scales to determine diverse patterns of species richness.  相似文献   

18.
Aim Geographic variation in the species richness of birds has been shown to be strongly associated with annual water and energy levels (actual evapotranspiration, AET) at the global scale. However, the gradient in eastern North America appears to be anomalous, because richness is greatest around the Great Lakes, whereas AET is highest in the south‐eastern US. Here I examine if birds may be responding to vegetation produced during the breeding season rather than to annual production. Location North America east of longitude 98° W. Methods The bird richness pattern was examined using climatic variables, remotely sensed estimates of annual and seasonal plant biomass, and time since areas were exposed by the retreating Laurentide ice sheet from 20,000 to 6000 yr bp . Results Average summer GVI (Global Vegetation Index, derived from NDVI) was found to be positively linearly associated with richness, explaining 82% of the variance, whereas the relationships between richness and annual measures of both AET and GVI were curvilinear. The pattern of retreat of the Laurentide ice sheet explained an additional 6% of the variance in richness, consistent with a previous analysis of Canadian birds. Main conclusions In eastern North America, a seasonal variable associated with plant production explains the diversity gradient rather than the annual measures, but it does not undermine a general conclusion that bird diversity is closely linked with plant biomass. Further, both contemporary and historical factors appear to influence the gradient, and an association between bird richness and the geographic pattern of glacial retreat is detectable in both climatic and plant‐biomass models of bird diversity.  相似文献   

19.
Aim Presentation of an hypothesis suggesting that the extraordinarily similarity of the Russian Altai and the American Southern Rocky Mountain Flora represents an Oroboreal Flora; that had to have had an essential continuity across the northern part of the world in the Tertiary period, constituting a highland and steppe component of the better‐known Arcto‐Tertiary Flora of eastern and far‐western North America and eastern Asia. Location North America and Middle (Altai) Asia. Methods Summarization of the author's field and herbarium studies of whole floras over a period of over 60 years, consisting of successive specializations in vascular plants, lichens, and bryophytes. Main conclusions (1) The modern alpine and associated marginal steppe and montane floras contain taxa of Tertiary age. (2) The floras of the southern mountains antedate those of the present‐day Arctic. (3) The Middle Asiatic and the North American floras once enjoyed a contiguous existence over a broad area involving connections between North America and Asia across the North Pole by way of Greenland. Their present disjunctions are products of extinction and attrition of ranges, not of long‐distance migration or dispersal mechanisms. (4) North‐eastern North American disjunctions of so‐called Cordilleran species (the Nunatak hypothesis) need not require explanations involving long‐distance dispersal or migration, but represent relictual populations of the once widely distributed Oroboreal flora.  相似文献   

20.
Biogeographic disjunction patterns, where multiple taxa are shared between isolated geographic areas, represent excellent systems for investigating the historical assembly of modern biotas and fundamental biological processes such as speciation, diversification, niche evolution, and evolutionary responses to climate change. Studies on plant genera disjunct across the northern hemisphere, particularly between eastern North America (ENA) and eastern Asia (EAS), have yielded tremendous insight on the geologic history and assembly of rich temperate floras. However, one of the most prevalent disjunction patterns involving ENA forests has been largely overlooked: that of taxa disjunct between ENA and cloud forests of Mesoamerica (MAM), with examples including Acer saccharum, Liquidambar styraciflua, Cercis canadensis, Fagus grandifolia, and Epifagus virginiana. Despite the remarkable nature of this disjunction pattern, which has been recognized for over 75 years, there have been few recent efforts to empirically examine its evolutionary and ecological origins. Here I synthesize previous systematic, paleobotanical, phylogenetic, and phylogeographic studies to establish what is known about this disjunction pattern to provide a roadmap for future research. I argue that this disjunction pattern, and the evolution and fossil record of the Mexican flora more broadly, represents a key missing piece in the broader puzzle of northern hemisphere biogeography. I also suggest that the ENA–MAM disjunction represents an excellent system for examining fundamental questions about how traits and life history strategies mediate plant evolutionary responses to climate change and for predicting how broadleaf temperate forests will respond to the ongoing climatic pressures of the Anthropocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号