首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Immunogold labeling was used to study the distribution of (1 → 3)-β-glucans and (1 → 3, 1 → 4)-β-glucans in the rice grain during cellularization of the endosperm. At approximately 3–5 d after pollination the syncytial endosperm is converted into a cellular tissue by three developmentally distinct types of wall. The initial free-growing anticlinal walls, which compartmentalize the syncytium into open-ended alveoli, are formed in the absence of mitosis and phragmoplasts. This stage is followed by unidirectional (centripetal) growth of the anticlinal walls mediated by adventitious phragmoplasts that form between adjacent interphase nuclei. Finally, the periclinal walls that divide the alveoli are formed in association with centripetally expanding interzonal phragmoplasts following karyokinesis. The second and third types of wall are formed alternately until the endosperm is cellular throughout. All three types of wall that cellularize the endosperm contain (1 → 3)-β-glucans but not (1 → 3, 1 → 4)-β-glucans, whereas cell walls in the surrounding maternal tissues contain considerable amounts of (1 → 3, 1 → 4)-β-glucans with (1 → 3)-β-glucans present only around plasmodesmata. The callosic endosperm walls remain thin and cell plate-like throughout the cellularization process, appearing to exhibit a prolonged juvenile state. Received: 7 January 1997 / Accepted: 11 February 1997  相似文献   

2.
Summary Asclepias speciosa Torr, has latex-containing cells known as nonarticulated laticifers. In stem sections of this species, we have analyzed the cell walls of nonarticulated laticifers and surrounding cells with various stains, lectins, and monoclonal antibodies. These analyses revealed that laticifer walls are rich in (1→4) β-D-glucans and pectin polymers. Immunolocalization of pectic epitopes with the antihomogalacturonan antibodies JIM5 and JIM7 produced distinct labeling patterns. JIM7 labeled all cells including laticifers, while JIM5 only labeled mature epidermal cells and xylem elements. Two antibodies, LM5 and LM6, which recognize rhamnogalacturonan I epitopes distinctly labeled laticifer walls. LM6, which binds to a (l→5) α-arabinan epitope, labeled laticifer walls more intensely than walls of other cells. LM5, which recognizes a (1→4) β-D-galac-tan epitope, did not label laticifer segments at the shoot apex but labeled more mature portions of laticifers. Also the LM5 antibody did not label cells at the shoot apical meristem, but as cells grew and matured the LM5 epitope was expressed in all cells. LM2, a monoclonal antibody that binds to β-D-glucuronic acid residues in arabinogalactan proteins, did not label laticifers but specifically labeled sieve tubes. Sieve tubes were also specifically labeled byRicinus communis agglutinin, a lectin that binds to terminal β-D-galactosyl residues. Taken together, the analyses conducted showed that laticifer walls have distinctive cytochemical properties and that these properties change along the length of laticifers. In addition, this study revealed differences in the expression of pectin and arabinogalactan protein epitopes during shoot development or among different cell types.  相似文献   

3.
Barley endosperm begins development as a syncytium where numerous nuclei line the perimeter of a large vacuolated central cell. Between 3 and 6 days after pollination (DAP) the multinucleate syncytium is cellularized by the centripetal synthesis of cell walls at the interfaces of nuclear cytoplasmic domains between individual nuclei. Here we report the temporal and spatial appearance of key polysaccharides in the cell walls of early developing endosperm of barley, prior to aleurone differentiation. Flowering spikes of barley plants grown under controlled glasshouse conditions were hand-pollinated and the developing grains collected from 3 to 8 DAP. Barley endosperm development was followed at the light and electron microscope levels with monoclonal antibodies specific for (1→3)-β-d-glucan (callose), (1→3,1→4)-β-d-glucan, hetero-(1→4)-β-d-mannans, arabino-(1→4)-β-d-xylans, arabinogalactan-proteins (AGPs) and with the enzyme, cellobiohydrolase II, to detect (1→4)-β-d-glucan (cellulose). Callose and cellulose were present in the first formed cell walls between 3 and 4 DAP. However, the presence of callose in the endosperm walls was transient and at 6 DAP was only detected in collars surrounding plasmodesmata. (1→3,1→4)-β-d-Glucan was not deposited in the developing cell walls until approximately 5 DAP and hetero-(1→4)-β-d-mannans followed at 6 DAP. Deposition of AGPs and arabinoxylan in the wall began at 7 and 8 DAP, respectively. For arabinoxylans, there is a possibility that they are deposited earlier in a highly substituted form that is inaccessible to the antibody. Arabinoxylan and heteromannan were also detected in Golgi and associated vesicles in the cytoplasm. In contrast, (1→3,1→4)-β-d-glucan was not detected in the cytoplasm in endosperm cells; similar results were obtained for coleoptile and suspension cultured cells.  相似文献   

4.
Cell walls isolated from pollen of Nicotiana alata germinated in vitro contain glucose and arabinose as the predominant monosaccharides. Methylation analysis and cytochemical studies are consistent with the major polysaccharides being a (13)--D-glucan (callose) and an arabinan together with small amounts of cellulose. The cell walls contain 2.8% uronic acids. Alcian blue stains the pollen-tube walls intensely at the tip, indicating that acidic polysaccharides are concentrated in the tip. Synthetic aniline-blue fluorochrome is specific primarily for (13)--D-glucans and stains the pollen-tube walls, except at the tip. Protein (1.5%), containing hydroxyproline (2.4%), is present in the cell wall.  相似文献   

5.
Cambium periodicity is correlated with changes in the cambial cell wall, but the heterogeneity of cell wall structure and composition makes it difficult to give an accurate interpretation, especially for complex secondary vascular tissues. A combination of different methods is necessary to reveal the structure of this complex cell wall. In this study, the cell wall architecture and composition of active and dormant cambial cells in Populus tomentosa were investigated by a combination of light microscopy, rapid-freezing and deep-etching electron microscopy, Fourier-transform infrared microspectroscopy and immuno-histochemistry. The results showed that the architecture of dormant cambial cell walls displayed a multi-layered structure, denser fibril network, smaller pore size, and fewer crosslinks between microfibrils than active cambial cell walls. The FTIR spectra of cell walls from active and dormant cambium showed differences in the intensity of bands near 1,740, 1,629, 1,537, 1,240, and 830 cm−1, which reflected differences in cell wall composition. Immuno-labeling indicated that high methyl-esterified homogalacturonan and (1 → 4)-β-d-galactan epitopes were abundant and distributed in active cambial cell walls, and relatively de-esterified homogalacturonan and (1 → 5)-α-l-arabinan epitopes had weak labeling in the active cambium, while almost no labeling or very weak labeling for high methyl-esterified homogalacturonan, (1 → 4)-β-d-galactan and (1 → 5)-α-l-arabinan epitopes occurred in dormant cambial cells, except for the de-esterified homogalacturonan epitope, which was abundant in dormant cambial cells. These results demonstrate that there are great differences, both in structure and composition, between active and dormant cambial cell walls, which reflect their dynamic changes during cambium activity.  相似文献   

6.
Philippe S  Saulnier L  Guillon F 《Planta》2006,224(2):449-461
Arabinoxylans (AX) and (1→3),(1→4)-β-glucans are major components of wheat endosperm cell walls. Their chemical heterogeneity has been described but little is known about the sequence of their deposition in cell walls during endosperm development. The time course and pattern of deposition of the (1→3) and (1→3),(1→4)-β-glucans and AX in the endosperm cell walls of wheat (Triticum aestivum L. cv. Recital) during grain development was studied using specific antibodies. At approximately 45°D (degree-days) after anthesis the developing walls contained (1→3)-β-glucans but not (1→3),(1→4)-β-glucans. In contrast, (1→3),(1→4)-β-glucans occurred widely in the walls of maternal tissues. At the end of the cellularization stage (72°D), (1→3)-β-glucan epitopes disappeared and (1→3),(1→4)-β-glucans were found equally distributed in all thin walls of wheat endosperm. The AX were detected at the beginning of differentiation (245°D) in wheat endosperm, but were missing in previous stages. However, epitopes related to AX were present in nucellar epidermis and cross cells surrounding endosperm at all stages but not detected in the maternal outer tissues. As soon as the differentiation was apparent, the cell walls exhibited a strong heterogeneity in the distribution of polysaccharides within the endosperm.  相似文献   

7.
Preliminary data on the polysaccharide composition of mycelium and cell walls of the fungus Penicillium roqueforti grown by the method of submerged cultivation have been obtained. Mild acid hydrolysis of both mycelium and cell walls results in formation of glucose, mannose, and galactose, while the treatment with acid under severe conditions results in formation of glucosamine, a product of chitin hydrolysis, the content of which is 19% in the cell walls. Several polysaccharide fractions were isolated from mycelium by successive extraction with hot water and 1 M NaOH at room temperature; their monosaccharide composition was characterized. The main fraction extracted by alkali, according to the data of NMR spectroscopy, mass spectrometry, and the chemical methods of structural analysis, is a linear α-D-glucopyranan, where the blocks of (1 → 3)-bound glucose residues are linked by single bonds (1 → 4). Water-soluble polysaccharides contain the linear blocks of (1 → 5)-bound residues of β-galactofuranose, most probably attached to the mannan core. The findings are of interest for chemotaxonomy of Penicillium fungi.  相似文献   

8.
The effect of papulacandin B on regenerating protoplasts ofSaccharomyces cerevisiae was studied by light and electron microscopy. In liquid media it inhibited the biogenesis of (1→3)-β-d-glucan fibrillar nets; as a result, the protoplasts did not grow polarly but only spherically. The effect was reversible. Instead of the nets the inhibited protoplasts synthesized only individual microfibrils soluble in hydroxide; these were not joined in the nets and were partially masked by amorphous material. The microfibrils disintegrated after lysis and did not maintain the shape of protoplasts. Protoplasts inhibited in solid media grew spherically up to 25 μm but they did not divide or revert or revert, in spite of forming cell walls. These walls were amorphous and fragile and they disintegrated during preparation. Papulacandin B did not decrease the viability of protoplasts and did not interfere with their growth, biogenesis of alkali-soluble glucan microfibrils or amorphous wall matrix. It inhibited specifically the synthesis of alkali-insoluble branched (1→3)-β-d-glucan, a necessary building unit required for the formation of the fibrillar component of the cell wall responsible for the cell wall shape, its rigidity and tensile strength.  相似文献   

9.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [→ 3)-β-D-Galf-(1 → 5)-β-D-Galf-(1 →] n → mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [→ 5)-β-D-Galf-(1 →] n → mannan core. The mannan cores have also been investigated, and are constituted by a (1 → 6)-α-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 → 2) linked α-mannopyranoses. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary. We are presenting the pattern of distribution of several carbohydrate epitopes, which constitute an important component of cell walls, within the anthers and pistils of a monocot grass species, perennial ryegrass (Lolium perenne L.). The results of immunocytochemical studies revealed that the flower organs are rich in (1→3, 1→4)-β-D-glucans and possess surprisingly high amounts of methylesterified pectic domains that bind JIM7 antibody and pectin side chains rich in (1→4)-β-D-galactose residues which react with LM5 antibody. The presence of arabinogalactan protein epitopes binding JIM13 is restricted to microspores and ovule integuments. The results are discussed in terms of possible functions of cell wall polysaccharides and arabinogalactan proteins in the differentiation of flower organs. Correspondence and reprints: Institute of Plant Breeding and Acclimatization, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Poland.  相似文献   

11.
Lactococcus lactis subspecies cremoris SBT 0495 produces the phosphopolysaccharide viilian, which consists of the repeating unit β-d-glucosyl-(1→4)-(α-l-rhamnosyl-(1→2))-(α-d-galactose-1-phosphoryl-(→3)-β-galactosyl-(1→4)-β-d-glucose. A lipid extract was prepared from cells in the late exponential phase of growth and was hydrolyzed by hydrochloric acid under mild conditions to split lipid-linked intermediates in the extract into lipid and sugar moieties. Both moieties were purified by chromatographic techniques and were characterized to identify intermediates of the viilian biosynthetic pathway. A polyisoprenoid isolated from the chloroform-soluble fraction of the hydrolyzed lipid extract was identified by mass spectrometry as undecaprenol. Saccharides isolated from the water-soluble fraction of the hydrolyzed lipid extract by anion-exchange chromatography, were characterized by glycosidic linkage analysis to discriminate sugar moieties of intermediates of viilian biosynthesis from compounds liberated from cell wall components. Some oligosaccharide analogues contain a glycerol residue, suggesting that these are fragments of glycosylglycerides and/or lipoteichoic acid. Three fragments were identified to be glucose, galactosyl-(1→4)-glucose, and rhamnosyl-(1→2)-galactosyl-(1→4)-glucose, which are in agreement with the structure of the repeating unit of viilian. These saccharides most likely represent the first three steps of the sequential assembly of the repeating unit of the undecaprenol assembly. Received: 2 November 1998 / Accepted: 3 March 1999  相似文献   

12.
13.
Two new asterosaponins, diplasteriosides A and B, bearing the same β-D-Fucp-(1→2)-β-D-Galp-(1→4)-[β-D-Quip-(1→2)]-β-D-Quip-(1→3)-β-D-Quip-(1→ oligosaccharide chains linked to the C6 atom of the known genins, 3-O-sulfates of thornasterols A and B, respectively, were isolated from the Antarctic Diplasterias brucei starfish along with the previously known asteriidoside A. The structures of the new compounds were elucidated by two-dimensional NMR spectroscopy and mass spectrometry. Cytotoxicities of the isolated asterosaponins against the human colon cancer HCT-116, human breast cancer T-47D cell line, and human melanoma cancer RPMI-7951 cell lines were studied.  相似文献   

14.
We have identified a minor hemoglobin component (∼5%) in the blood of a healthy Costa Rican female, but not in her mother and two brothers (father not studied), that has an His→Arg replacement at position β77 (Hb Costa Rica). No other amino acid replacements were observed and no β- or γ-chain-like peptides were present. Hb Costa Rica has a normal stability. Sequence analyses of numerous polymerase chain reaction (PCR)-amplified segments of DNA that contain exon 2 of the β gene failed to identify a CAC→CGC (His→Arg) mutation. The same was the case when cDNA was sequenced, indicating that a β-Costa Rica-mRNA could not be detected with this procedure. Gene mapping of genomic DNA with BglII, BamHI, and HindIII gave normal fragments only and with the same intensity as observed for the fragments of a normal control. The quantities of the β chain variants Hb J-Iran and Hb Fukuyama with related mutations at β77 vary between 30% and 45% in heterozygotes, whereas that of Hb F-Kennestone with the same His→Arg mutation but in the Gγ-globin gene, is a high 40%–45% (as percentage of total Gγ) in a heterozygous newborn. These different observations exclude a heterozygosity of the A→G mutation at codon β77, as well as a deletion comparable to that of Hbs Lepore or Kenya, or a β-globin gene duplication, and point to a nontraditional inheritance of Hb Costa Rica. Allele-specific amplification of cDNA with appropriate primers identified the presence of a low level of mutated mRNA in the reticulocytes of the patient, which was confirmed by dotblot analysis of the same material with 32P-labeled probes. Comparable amplification products were not observed in genomic DNA. The A→G mutation apparently occurred in a somatic cell at a relatively early stage in the development of the hematopoietic cell system, and Hb Costa Rica accumulated through rapid cell divisions in patchy areas in the bone marrow (somatic mosaicism). An unequal distribution of Hb Costa Rica over the red cells supports this possibility. Received: 25 August 1995 / Revised: 13 December 1995  相似文献   

15.
Seven analogues of p-nitrophenyl T-antigen [Galβ(1→3)GalNAcα(1→O)PNP] have been synthesized as potential substrates for elucidation of the substrate specificity of endo-α-N-acetylgalactosaminidase. These compounds, which are commercially unavailable, include: GlcNAcβ(1→3){GlcNAcβ(1→6)}GalNAcα(1→O)PNP [core 4 type], GalNAcα(1→3)GalNAcα(1→O)PNP [core 5 type], GlcNAcβ(1→6)GalNAcα(1→O)PNP [core 6 type], GalNAcα(1→6)GalNAcα(1→O)PNP [core 7 type], Galα(1→3)GalNAcα(1→O)PNP [core 8 type], Glcβ(1→3)GalNAcα(1→O)PNP and GalNAcβ(1→3)GalNAcα(1→O)PNP. The assembly of these synthetic probes was accomplished efficiently, based on di-tert-butylsilylene(DTBS)-directed α-galactosylation as a key reaction.  相似文献   

16.
Cell walls of Bacillus subtilis VKM B-760 and VKM B-764 are characterized by heterogeneous composition of teichoic acids. Polymer I with structure -6)-β-D-Galp-(1→1)-sn-Gro-(3-P-, polymer II with structure -6)-α-D-Glcp-(1→1)-sn-Gro-(3-P-, and a small amount of unsubstituted 1,3-poly(glycerol phosphate) were detected in strain VKM B-760. Strain VKM B-764 contains an analogous set of teichoic acids, but a characteristic feature of polymer II is the presence of disubstituted glycerol residue with α-glucopyranose localization in the integral chain at C-1 hydroxyl and β-glucopyranose as a side branch at C-2 hydroxyl (polymer III): -6)-α-D-Glcp-(1→1)-[β-D-Glcp-(1→2)]-sn-Gro-(3-P-. The structures of polymer I in bacilli and polymer III in Gram-positive bacteria are described for the first time. Teichoic acids were studied by chemical methods and on the basis of combined analysis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, and ROESY, and heteronuclear two-dimensional 1H/13C gHSQC- and HMQC-TOCSY experiments. Simultaneous presence of several different structure teichoic acids in the bacillus cell walls as well as chemotaxonomical perspectives of the application of these polymers as species-specific markers for members of the Bacillus genus is discussed.  相似文献   

17.
The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (β-1,4-mannan, β-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized β-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of β-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP–CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP–CBM27 maintained its binding ability to soluble β-mannans, while normal GFP could not bind to β-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP–CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete β-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, β-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP–CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP–CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of β-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.  相似文献   

18.
Auxin induces cell elongation by increasing the extensibility of the cell wall. Biochemical modifications of wall constituents lead to such changes in the mechanical properties of the cell wall (wall loosening). The results obtained in the studies using antibodies and lectins as specific probes indicate that the breakdown of xyloglucans in dicotyledons and (1→3), (1→4)-β-glucans in Poaceae is involved in auxin-induced wall loosening. In dicotyledons, xyloglucans are degraded by the direct hydrolysis with an endoglucanase to oligosaccharides and by the two-step reaction via a product with intermediate size. (1→3), (1→4)-β-Glucan breakdown in Poaceae coleoptiles is mediated by the two-step reaction with endo-and exoglucanases. Although auxin inducesde novo synthesis of some hydrolases involved in breakdown of these polysaccharides, the breakdown activity is also regulated by the wall environment such as pH, by the mobility of hydrolases through wall networks, by the interaction of hydrolases with wall polysaccharide complex, and by the presence and the concentrations of different types of regulatory molecules. Recipient of the Botanical Society Award of Young Scientists, 1992.  相似文献   

19.
We have used a well-characterized antibody specific for an epitope consisting of (1→3,6)-β-d-galactosyl residues with terminal glucuronic or 4-O-methylglucuronic acids of a bioactive pectin and immunocytochemistry to investigate its secretion and wall distribution in the hypocotyl and root tissues of flax seedlings. Our results show that this antigenic epitope is associated with flax pectins and is expressed by all the cells of the hypocotyl and root tissues. In the hypocotyl, it is abundant in the primary wall of epidermal cells as well as in the secondary wall of fiber cells, and is relatively less abundant in parenchyma cell walls. In contrast, the epitope is not detected in the middle lamellae and cell junction regions. In the root tip cells, immunogold electron microscopy shows that the cell walls of peripheral, columella, meristematic, cortical, and epidermal cells contain significant amounts of this epitope and that the distribution patterns are distinct. Together, these findings show that the antigenic epitope occurs in discrete domains of the wall implying a strict spatial regulation of the epitope-containing molecules. The results also show that, in root cells, the epitope is present within Golgi cisternae and is predominantly assembled in the trans and the trans-Golgi network compartments. Accepted: 21 October 1999  相似文献   

20.
Jacalin has been found to agglutinate Ehrlich ascites cells. The agglutination was inhibited by α-glycosides of D-Gal and β -D-Gal(1 → 3)-D-GalNAc suggesting that the lectin-ascites interaction was carbohydrate-specific. There was 21.8% inhibition of tumour (ascites) cell growthin vivo in mice administered 50μg of jacalin by injection for 6 days following intraperitoneal injection of ascites cells. Administration of 100, 150 and 200μg jacalin resulted in 40.2, 57.5 and 83% inhibition respectively. Thein vivo inhibition of tumour cells growth by jacalin was due to its preferential binding with D-Gal-α -(1 → 6) present as terminal residues in the glycoprotein on tumour cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号