首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cytomegalovirus (CMV) is the most significant infectious cause of brain disorders in humans involving the developing brain. It is hypothesized that the brain disorders occur after recurrent reactivation of the latent infection in some kinds of cells in the brains. In order to test this hypothesis, we examined the reactivation of latent murine CMV (MCMV) infection in the mouse brain by transfer to brain slice culture. We infected neonatal and young adult mice intracerebrally with recombinant MCMV in which the lacZ gene was inserted into a late gene. The brains were removed 6 months after infection and used to prepare brain slices that were then cultured for up to 4 weeks. Reactivation of latent infection in the brains was detected by beta-galactosidase (beta-Gal) staining to assess beta-galactosidase expression. Viral replication was also confirmed by the plaque assay. Reactivation was observed in about 75% of the mice infected during the neonatal period 6 months after infection. Unexpectedly, reactivation was also observed in 75% of mice infected as young adults, although the infection ratio in the brain slices was significantly lower than that in neonatally infected mice. Beta-Gal-positive cells were observed in marginal regions of the brains or immature neural cells in the ventricular walls. Immunohistochemical staining showed that the beta-Gal-positive reactivated cells were neural stem or progenitor cells. These results suggest that brain disorders may occur long after infection by reactivation of latent infection in the immature neural cells in the brain.  相似文献   

2.
Cytomegalovirus (CMV) is one of the most common viral pathogens leading to neurological dysfunction in individuals with depressed immune systems. How CMV enters the brain remains an open question. The hypothesis that brain injury may enhance the entrance of CMV into the brain was tested. Insertion of a sterile needle into the brain caused a dramatic increase in mouse CMV in the brains of immunodeficient SCID mice inoculated peripherally within an hour of injury and examined 1 week later; peripheral inoculation 48 h after injury and a 1-week survival resulted in only a modest infection at the site of injury. In contrast, uninjured SCID mice, as well as injured immunocompetent control mice, showed little sign of viral infection at the same time intervals. Direct inoculation of the brain resulted in widespread dispersal and enhanced replication of mCMV in SCID brains tested 1 week later but not in parallel control brains. Differential viremia was unlikely to account for the greater viral load in the SCID brain, since increased mCMV in the blood of SCID compared to controls was not detected until a longer interval. These data suggest that brain injury enhances CMV invasion of the brain, but only when the adaptive immune system is compromised, and that the brain's ability to resist viral infection recovers rapidly after injury.  相似文献   

3.
With little improvement in the poor prognosis for humans with high-grade glioma brain tumors, alternative therapeutic strategies are needed. As such, selective replication-competent oncolytic viruses may be useful as a potential treatment modality. Here we test the hypothesis that defects in the interferon (IFN) pathway could be exploited to enhance the selective oncolytic profile of vesicular stomatitis virus (VSV) in glioblastoma cells. Two green fluorescent protein-expressing VSV strains, recombinant VSV and the glioma-adapted recombinant VSV-rp30a, were used to study infection of a variety of human glioblastoma cell lines compared to a panel of control cells, including normal human astrocytes, oligodendrocyte precursor cells, and primary explant cultures from human brain tissue. Infection rate, cell viability, viral replication, and IFN-alpha/beta-related gene expression were compared in the absence and presence of IFN-alpha or polyriboinosinic polyribocytidylic acid [poly(I:C)], a synthetic inducer of the IFN-alpha/beta pathway. Both VSV strains caused rapid and total infection and death of all tumor cell lines tested. To a lesser degree, normal cells were also subject to VSV infection. In contrast, IFN-alpha or poly(I:C) completely attenuated the infection of all primary control brain cells, whereas most glioblastoma cell lines treated with IFN-alpha or poly(I:C) showed little or no sign of protection and were killed by VSV. Together, our results demonstrate that activation of the interferon pathway protects normal human brain cells from VSV infection while maintaining the vulnerability of human glioblastoma cells to viral destruction.  相似文献   

4.

Background

Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV) disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s) underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth) induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM). Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives.

Results

E11 mouse mandibular processes (MANs) were infected with mouse CMV (mCMV) for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins.

Conclusion

Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal cells and surrounding matrix. Moreover, since it is critically important that signaling molecules are expressed in appropriate cell populations during development, the aberrant localization of components of relevant signaling pathways may reveal the pathogenic mechanism underlying mandibular malformations.  相似文献   

5.
Cytomegalovirus (CMV) has been suggested as the most prevalent infectious agent causing neurological dysfunction in the developing brain; in contrast, CMV infections are rare in the adult brain. One explanation generally given for the developmental susceptibility to the virus is that the developing immune system is too immature to protect the central nervous system from viral infection, but as the immune system develops it can protect the brain. We suggest an alternate view: that developing brain cells are inherently more susceptible to CMV infection, independent of the immune system. We used a recombinant mouse CMV that leads to green fluorescent protein expression in infected cells. Control experiments demonstrated a high correlation between the number of cells detected with the viral GFP reporter gene and with immunocytochemical detection of the virus. After intracerebral inoculation, the number of CMV-infected cells in neonatal brains was many times greater than in mature control or mature immunodepressed SCID mice, and the mortality rate of neonates was substantially greater than SCID or control adults. Parallel experiments with live brain slices inoculated in vitro, done in the absence of the systemic immune system, generated similar data, with immature hippocampus, hypothalamus, cortex, striatum, and cerebellum showing substantially greater numbers of infected cells (100-fold) than found in adult slices in these same regions. Interestingly, in the cerebellar cortex, CMV-infected cells were more prevalent in the postmitotic Purkinje cell layer than in the mitotic granule cell layer, suggesting a selective infection of some cell types not dependent on cell division. Together, these data support the view that CMV has an intrinsic preference for infection of developing brain cells, independent, but not mutually exclusive, of the developmental status of the systemic immune system in controlling CMV infection.  相似文献   

6.
7.
8.
Cytomegalovirus (CMV), the major viral cause of congenital disease, infects the uterus and developing placenta and spreads to the fetus throughout gestation. Virus replicates in invasive cytotrophoblasts in the decidua, and maternal immunoglobulin G (IgG)-CMV virion complexes, which are transcytosed by the neonatal Fc receptor across syncytiotrophoblasts, infect underlying cytotrophoblasts in chorionic villi. Immunity is central to protection of the placenta-fetal unit: infection can occur when IgG has a low neutralizing titer. Here we used immunohistochemical and function-blocking methods to correlate infection in the placenta with expression of potential CMV receptors in situ and in vitro. In placental villi, syncytiotrophoblasts express the virion receptor epidermal growth factor receptor (EGFR) but lack integrin coreceptors, and virion uptake occurs without replication. Focal infection can occur when transcytosed virions reach EGFR-expressing cytotrophoblasts that selectively initiate expression of alphaV integrin. In cell columns, proximal cytotrophoblasts lack receptors and distal cells express integrins alpha1beta1 and alphaVbeta3, enabling virion attachment. In the decidua, invasive cytotrophoblasts expressing coreceptors upregulate EGFR, thereby dramatically increasing susceptibility to infection. Our findings indicate that virion interactions with cytotrophoblasts expressing receptors in the placenta (i) change as the cells differentiate and (ii) correlate with spatially distinct sites of CMV replication in maternal and fetal compartments.  相似文献   

9.
In this study, we have analyzed the effect of human alpha interferon (IFN-alpha) on a single replication cycle of human immunodeficiency virus type 1 (HIV-1) infection in the lymphocytic cell line CEM-174, which is highly sensitive to the antiviral effects of IFN. Pretreatment of cells with 50 to 500 U of recombinant human IFN-alpha per ml resulted in a marked reduction in viral RNA and protein synthesis. The effect of IFN-alpha was dose dependent and was amplified in multiple infection cycles. IFN-induced inhibition of viral protein synthesis could be detected only when cells were treated with IFN-alpha prior to infection or when IFN-alpha was added up to 10 h postinfection, but not if IFN-alpha was added at the later stages of HIV-1 replication cycle or after the HIV-1 infection was already established. Analysis of the integrated HIV-1 provirus showed a marked decrease in the levels of proviral DNA in IFN-treated cells. Thus, in contrast to the previous studies on established HIV-1 infection in T cells, in which the IFN block appeared to be at the posttranslational level, during de novo infection, IFN-alpha interferes with an early step of HIV-1 replication cycle that occurs prior to the integration of the proviral DNA. These results indicate that the early IFN block of HIV-1 replication, which has been previously observed only in primary marcophages, can also be detected in the IFN-sensitive T cells, indicating that the early IFN block is not limited to macrophages.  相似文献   

10.
Protection against West Nile virus (WNV) infection requires rapid viral sensing and the generation of an interferon (IFN) response. Mice lacking IFN regulatory factor 3 (IRF-3) show increased vulnerability to WNV infection with enhanced viral replication and blunted IFN-stimulated gene (ISG) responses. IRF-3 functions downstream of several viral sensors, including Toll-like receptor 3 (TLR3), RIG-I, and MDA5. Cell culture studies suggest that host recognizes WNV in part, through the cytoplasmic helicase RIG-I and to a lesser extent, MDA5, both of which activate ISG expression through IRF-3. However, the role of TLR3 in vivo in recognizing viral RNA and activating antiviral defense pathways has remained controversial. We show here that an absence of TLR3 enhances WNV mortality in mice and increases viral burden in the brain. Compared to congenic wild-type controls, TLR3(-/-) mice showed relatively modest changes in peripheral viral loads. Consistent with this, little difference in multistep viral growth kinetics or IFN-alpha/beta induction was observed between wild-type and TLR3(-/-) fibroblasts, macrophages, and dendritic cells. In contrast, a deficiency of TLR3 was associated with enhanced viral replication in primary cortical neuron cultures and greater WNV infection in central nervous system neurons after intracranial inoculation. Taken together, our data suggest that TLR3 serves a protective role against WNV in part, by restricting replication in neurons.  相似文献   

11.
Human herpesvirus 8 (HHV-8) encodes multiple proteins that disrupt the host antiviral response, including viral interferon (IFN) regulatory factor 1 (vIRF-1). The product of the vIRF-1 gene blocks responses to IFN when overexpressed by transfection, but the functional consequence of vIRF-1 that is expressed during infection with HHV-8 is not known. These studies demonstrate that BCBL-1 cells that were latently infected with HHV-8 expressed low levels of vIRF-1 that were associated with PML bodies, whereas much higher levels of vIRF-1 were transiently expressed during the lytic phase of HHV-8 replication. The low levels of vIRF-1 that were associated with PML bodies were insufficient to block alpha IFN (IFN-alpha)-induced alterations in gene expression, whereas cells that expressed high levels of vIRF-1 were resistant to some changes induced by IFN-alpha, including the expression of the double-stranded-RNA-activated protein kinase. High levels of vIRF-1 were expressed for only a short period during the lytic cascade, so many cells with HHV-8 in the lytic phase responded to IFN-alpha with increased expression of antiviral genes and enhanced apoptosis. Furthermore, the production of infectious virus was severely compromised when IFN-alpha was present early during the lytic cascade. These studies indicate that the transient expression of high levels of vIRF-1 is inadequate to subvert many of the antiviral effects of IFN-alpha so that IFN-alpha can effectively induce apoptosis and block production of infectious virus when present early in the lytic cascade of HHV-8.  相似文献   

12.
13.
Using primary culture methods, we show that purified astrocytes from embryonic mouse or rat central nervous system (CNS) can be induced to produce interferon (IFN) activity when pretreated with a standard IFN-superinducing regimen of polyribonucleotide, cycloheximide, and actinomycin D, whereas IFN activity was not inducible in neuronal cultures derived from mouse CNS. Astrocyte IFN displays inductive, kinetic, physicochemical, and antigenic properties similar to those of IFN-alpha/beta, but is dissimilar to lymphocyte IFN (IFN-gamma). Treatment of pure astrocytic cultures or astrocytes cultured with neurons with astrocyte IFN or IFN-alpha/beta induced a dramatic increase in the expression of H-2 antigens on a subpopulation of astrocytes. Neither neurons nor oligodendroglia expressed detectable levels of H-2 antigens when exposed to astrocyte IFN, IFN-alpha/beta, or to IFN-beta. Injection of astrocyte IFN or IFN-alpha/beta directly into brains of newborn mice indicated that H-2 antigens were also induced in vivo. None of the IFNs (astrocyte, alpha/beta, or beta) tested induced Ia antigens on CNS cells in vitro or in vivo. Since H-2 antigens have a critical role in immune responses, astrocyte IFN may initiate and participate in immune reactions that contribute to immunoprotective and immunopathological responses in the CNS.  相似文献   

14.
Plasmacytoid dendritic cells (pDC) are the principal producers of IFN-alpha in response to viral infection. Because pDC are present in the thymus, we investigated the consequences of HIV-1-induced IFN-alpha production by thymic pDC. We observed that thymic pDC as well as thymocytes express intracellular IFN-alpha upon infection with HIV-1. However, only the pDC could suppress HIV-1 replication, because depletion of pDC resulted in enhancement of HIV-1 replication in thymocytes. Thymic pDC could also produce IFN-alpha in response to CpG oligonucleotides, consistent with the observations of others that peripheral pDC produce IFN-alpha upon engagement of TLR-9. Importantly, CpG considerably increased IFN-alpha production induced by HIV-1, and addition of CpG during HIV-1 infection enhanced expression of the IFN response protein MxA in thymocytes and strongly reduced HIV-replication. Our data indicate that thymic pDC modulate HIV-1 replication through secretion of IFN-alpha. The degree of inhibition depends on the level of IFN-alpha produced by the thymic pDC.  相似文献   

15.
Human cytomegalovirus (CMV) causes severe disease in immunosuppressed patients and notably infects the gastrointestinal tract. To understand the interaction of CMV with intestinal epithelial cells, which are highly susceptible to CMV infection in vivo, we used the intestinal epithelial cell line Caco-2 and demonstrated that CMV enters predominantly through the basolateral surface of polarized Caco-2 cells. As shown by expression of all three classes of CMV proteins and by visualization of nucleocapsids by transmission electron microscopy, both poorly and fully differentiated Caco-2 cells were permissive to CMV replication. However, infection failed to produce infectious particles in Caco-2 cells, irrespective of the state of differentiation.  相似文献   

16.
Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-alpha/beta (type I IFN) and IFN-lambda (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-alpha/beta and IFN-lambda systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-lambda. In the brain, IFN-alpha/beta was readily produced after infection with various RNA viruses, whereas expression of IFN-lambda was low in this organ. In the liver, virus infection induced the expression of both IFN-alpha/beta and IFN-lambda genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-alpha/beta and IFN-lambda to be compared. The response to IFN-lambda correlated with expression of the alpha subunit of the IFN-lambda receptor (IL-28R alpha). The IFN-lambda response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-lambda in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-alpha/beta was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-lambda system probably evolved to specifically protect epithelia. IFN-lambda might contribute to the prevention of viral invasion through skin and mucosal surfaces.  相似文献   

17.
Interferon (IFN) is crucial for initiating the innate immune response and for the generation of the adaptive response. IFN, in most species, comprises IFN-alpha (IFN-alpha), IFN-beta (IFN-beta) and IFN-gamma (IFN-gamma). In this study, we compared the capacity of porcine IFN-alpha, -beta and -gamma, or a combination of them, to protect IBRS-2 cells (porcine kidney cells) from infection with pseudorabies virus (PRV). The results demonstrated that porcine IFN-beta (PoIFN-beta) was the most efficient of the three IFNs in conferring resistance PRV infection; 100 U/mL PoIFN-beta inhibited PRV plaque formation 5.3-fold. Compared with PoIFN-beta, porcine IFN-gamma (PoIFN-gamma) was less capable of inhibiting PRV plaque formation (3.3-fold inhibition). Porcine IFN-alpha (PoIFN-alpha) had the least capability of the three PoIFNs, and inhibited PRV plaque formation only 1.26-fold. The inhibitory capacity increased to only 2.3-fold with a treatment of 12,800 U/mL PoIFN-alpha. A combination of PoIFN-gamma and PoIFN-alpha or PoIFN-beta inhibited PRV plaque formation 12.8-fold or 100-fold, respectively. Treatment of IBRS-2 cells with PoIFN-alpha/beta and PoIFN-gamma inhibited PRV replication 29- or 146-fold. Additionally, real-time PCR analyses of the PRV immediate early (IE) gene revealed that IE mRNA expression was profoundly decreased in cells stimulated with PoIFN-alpha/beta and PoIFN-gamma (23.8-133.0-fold) compared with vehicle-treated cells. All the findings indicate that PoIFN-gamma acts synergistically with other PoIFNs (PoIFN-alpha and -beta) to potently inhibit PRV replication in vitro.  相似文献   

18.
19.
Cytomegalovirus (CMV) is a β-herpesvirus that establishes a lifelong latent or persistent infection. A hallmark of chronic CMV infection is the lifelong persistence of large numbers of virus-specific CD8+ effector/effector memory T cells, a phenomenon called "memory inflation". How the virus continuously stimulates these T cells without being eradicated remains an enigma. The prevailing view is that CMV establishes a low grade "smoldering" infection characterized by tiny bursts of productive infection which are rapidly extinguished, leaving no detectable virus but replenishing the latent pool and leaving the immune system in a highly charged state. However, since abortive reactivation with limited viral gene expression is known to occur commonly, we investigated the necessity for virus reproduction in maintaining the inflationary T cell pool. We inhibited viral replication or spread in vivo using two different mutants of murine CMV (MCMV). First, famcyclovir blocked the replication of MCMV encoding the HSV Thymidine Kinase gene, but had no impact on the CD8+ T cell memory inflation once the infection was established. Second, MCMV that lacks the essential glycoprotein L, and thus is completely unable to spread from cell to cell, also drove memory inflation if the virus was administered systemically. Our data suggest that CMV which cannot spread from the cells it initially infects can repeatedly generate viral antigens to drive memory inflation without suffering eradication of the latent genome pool.  相似文献   

20.
Cytomegalovirus (CMV) retinitis is characterized by alterations in retinal cell function and host responses to virus replication. The goal of this study was to evaluate the induction of cyclooxygenase-2 (COX-2) and prostaglandin (PGE) in CMV infected human retinal pigment epithelial (RPE) cells and to determine their effect on virus replication. CMV immediate early (IE) protein and COX-2 proteins were identified in RPE cells in retinal tissue sections from patients with CMV retinitis. COX-2 mRNA and protein were induced after CMV infection of human RPE cell cultures. CMV infection of RPE cells induced translocation of NF-kappaB from the cytoplasm to the nucleus. PGE1 and PGE2 were significantly (p<0.001) increased in human RPE cell cultures infected with CMV. Inhibition of CMV IE gene by antisense oligonucleotides abrogated induction of mRNA for COX-2 and protein synthesis of COX-2 and PGE2. PGE enhanced CMV plaque formation and real time PCR analysis revealed that PGE treatment significantly increased CMV DNA copy numbers. These studies demonstrate that when CMV replicates within human RPE cells, COX-2 induction augments virus replication via the PGE pathway. The induction of COX-2 and PGE during retinal CMV infection may augment virus replication and alter a variety of retinal physiological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号