首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin–proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid–liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.  相似文献   

2.
Abstract In nature, bacteria encounter a variety of environmental conditions, among the most frequent of these is the limitation or starvation of one or more essential nutrients. It is reasonable to assume, therefore, that bacteria have evolved mechanisms to enhance their survival over prolonged periods of nutrient starvation. We have identified eight genetic loci in the enteropathogen Salmonella typhimurium , using Mu d -directed lacZ operon fusion technology, that were induced in response to two or more different starvation conditions (sti) . In simultaneous studies, we also identified genetic loci, using Mu d-lac fusions, which respond to only phosphate-starvation conditions (psi) . We further characterized these loci as to their induction-characteristics, kinetics of induction, expression during growth on different carbon sources, and approximate location on the S. typhimurium genetic map. In concurrent studies, we analyzed whole cell extracts of S. typhimurium grown under a variety of nutrients oxydation conditions as well as under nonlimiting conditions, using two-dimensional polyacrylamide gel electrophoresis. Results from these studies correlated well with our gene fusion studies. In more recent studies, we have demonstrated a complex genetic regulation of a number of these starvation-inducible loci, and have implicated at least four of these loci in the long term starvation-survival of S. typhimurium .  相似文献   

3.
4.
Cyanobacteria are significant contributors to global photosynthetic productivity, thus making it relevant to study how the different environmental stresses can alter their physiological activities. Here, we review the current research work on the response of cyanobacteria to different kinds of stress, mainly focusing on their response to metal stress as studied by using the modern proteomic tools. We also report a proteomic analysis of plastocyanin and cytochrome c6 deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803 grown under copper or iron deprivation, as compared to wild-type cells, so as to get a further understanding of the metal homeostasis in cyanobacteria and their response to changing environmental conditions.  相似文献   

5.
RNase R is an important exoribonuclease that participates in the degradation of structured RNAs in Escherichia coli. In earlier work, it was shown that RNase R levels increase dramatically under certain stress conditions, particularly during cold shock and stationary phase. However, the regulatory processes that lead to this elevation are not well understood. We show here that the increase in RNase R in stationary phase is unaffected by the global regulators, RpoS and (p)ppGpp, and that it occurs despite a major reduction in rnr message. Rather, we find that RNase R is a highly unstable protein in exponential phase, with a half-life of ∼10 min, and that the protein is stabilized in stationary phase, leading to its relative increase. RNase R is also stabilized during cold shock and by growth in minimal medium, two other conditions that lead to its elevation. These data demonstrate that RNase R is subject to regulation by a novel, posttranslational mechanism that may have important implications for our complete understanding of RNA metabolism.  相似文献   

6.
The effects of cadmium (Cd) supply level in nutrient solution (0, 12.5, 25, 50, 100, 200, 400, and 800 μM) on growth, Cd accumulation ability, and the related physiological indices of maize (Zea mays L.) seedlings were studied under hydroponic conditions. The results showed that the increments in the shoot height and biomass were stimulated at relatively low external Cd supply levels (<100 μM), while they were inhibited at Cd supply levels over 200 μM. Cd accumulation ability of the maize seedlings also showed the similar stimulation/inhibition pattern as shoot growth, and the Cd contents in the shoots and roots reached the peaks (389.5 and 505.5 mg/kg dry wt, respectively) at 50 μM Cd. The contents of chlorophyll a, chlorophyll b, and carotenoids in the maize leaf blades decreased with increasing external Cd supply level. At the highest Cd supply level (800 μM), the contents of chlorophyll a, chlorophyll b, and carotenoids in the leaf blade were only 38.9, 46.0, and 29.7% of the control plants, respectively. Moreover, chlorophyll b was more sensitive to the Cd stress than chlorophyll a. The increased proline content in the leaf blade of maize seedlings resulted from external Cd stress indicates that maize can adapt to the adversity menace via changing the content of proline.  相似文献   

7.
Although archaeal RNase P RNAs are similar in both sequence and structure to those of Bacteria rather than eukaryotes, and heterologous reconstitution between the Bacillus subtilis RNase P protein and some archaeal RNase P RNAs has been demonstrated, no archaeal protein sequences with similarity to any known bacterial RNase P protein subunit have been identified, and the density of Methanothermobacter thermoautotrophicus RNase P in Cs2SO4 (1.42 g/mL) is inconsistent with a single small bacterial-like protein subunit. Four hypothetical open reading frames (MTH11, MTH687, MTH688, and MTH1618) were identified in the genome of M. thermoautotrophicus that have sequence similarity to four of the nine Saccharomyces cerevisiae RNase P protein subunits: Pop4p, Pop5p, Rpp1p, and Rpr2p, respectively. Polyclonal antisera generated to recombinant Mth11p, Mth687p, Mth688p, and Mth1618p each recognized a protein of the predicted molecular weight in western blots of partially purified M. thermoautotrophicus RNase P, and immunoprecipitated RNase P activity from the same partially purified preparation. RNase P in Archaea is therefore composed of an RNA subunit similar to bacterial RNase P RNA and multiple protein subunits similar to those in the eukaryotic nucleus.  相似文献   

8.
Journal of Plant Research - Cajanus cajan is one of the least studied crop plants regarding its responses to stress conditions. Regular mechanical stress suppresses plant physiology and growth at...  相似文献   

9.
10.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

11.
The epoxidation of zeaxanthin (Zx) to violaxanthin after exposure to different light stress conditions has been studied in Arabidopsis (Arabidopsis thaliana). Formation of Zx was induced by illumination of intact leaves for up to 8 h at different light intensities and temperatures. The kinetics of epoxidation was found to be gradually retarded with increasing light stress during pre-illumination, indicating a gradual down-regulation of the Zx epoxidase activity. Retardation of the epoxidation rates by a factor of up to 10 was inducible either by increasing the light intensity or by extending the illumination time or by decreasing the temperature during pre-illumination. The retardation of the epoxidation kinetics was correlated with a decrease of the PSII quantum efficiency after the pre-illumination treatment. Experiments with the stn7/stn8 mutant of Arabidopsis indicated that the thylakoid protein kinases STN7 and STN8, which are required for the phosphorylation of PSII proteins, are not involved in the short-term down-regulation of Zx epoxidation. However, the retardation of Zx epoxidation was maintained in thylakoids isolated from pre-illuminated leaves, indicating that a direct modification of the Zx epoxidase is most likely involved in the light-induced down-regulation.  相似文献   

12.
Temperature changes and salt accumulation are among the most common abiotic factors affecting plants in agricultural and natural ecosystems. The different responses of plants to these factors have been widely investigated in previous works. However, detailed mechanism of the early photosynthetic response (first 24 h) has been poorly studied. The aim of the work was to monitor the early response of adult Arabidopsis thaliana plants exposed to different thermal (cold and heat) and salt conditions. Detailed evaluation of the efficiency of photosystem II was done, and the various routes of energy output as well as measurements of the contents of H2O2, proline, and photosynthetic pigments at different times during the first 24 h of treatment were examined. The conditions used in the study were those that caused a weak stress with time of exposure. Cold-treated plants showed the most continuous inhibitory effect on photosynthetic activity, with a fast metabolic slowdown (reduced PSII efficiency and decreased pigment contents), although they also demonstrated clear acclimation responses (increased heat dissipation and protein content). Heat-treated plants showed a late but stronger effect on photosynthesis with significantly increased quantum yield of nonregulated energy dissipation (??NO) and H2O2 content at the last measurements. Finally, salt-induced oxidative stress (increased H2O2 content), decreased PSII efficiency and pigment content.  相似文献   

13.
14.
《Autophagy》2013,9(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

15.
Wen-jian Lin  Hong-yu Kuang 《Autophagy》2014,10(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

16.
Oxygen is a diradical and because of its unique electronic configuration, it has the potential to form strong oxidants (e.g. superoxide radical, hydrogen peroxide and hydroxyl radical) called oxygen free radicals or partially reduced forms of oxygen (PRFO). These highly reactive oxygen species can cause cellular injury by oxidizing lipids and proteins as well as by causing strand breaks in nucleic acids. PRFO are produced in the cell during normal redox reactions including respiration and there are various antioxidants in the cell which scavenge these radicals. Thus in order to maintain a normal cell structure and function, a proper balance between free radical production and antioxidant levels is absolutely essential. Production of PRFO in the myocardium is increased during variousin vivo as well asin vitro pathological conditions and these toxic radicals are responsible for causing functional, biochemical and ultrastructural changes in cardiac myocytes. Indirect evidence of free radical involvement in myocardial injury is provided by studies in which protection against these alterations is seen in the presence of exogenous administration of antioxidants. Endogenous myocardial antioxidants have also been reported to change under various physiological as well as pathophysiological conditions. It appears that endogenous antioxidants respond and adjust to different stress conditions and failure of these compensatory changes may also contribute in cardiac dysfunction. Thus endogenous and/or exogenous increase in antioxidants might have a therapeutic potential in various pathological conditions which result from increased free radical production.  相似文献   

17.
18.
A possible relationship between aerobic fitness (AF), measured by maximal cycle ergometry (CE) and sympatho-adrenal response to acute, short lasting psycho-emotional stress was investigated by monitoring heart rate (f c) and excretion of catecholamines. The activation of the sympatho-adrenal system was characterised by the noradrenaline : adrenaline ratio. A group of 11 healthy men [22.8 (SD 2.52) years] lived under identical environmental conditions; their mean maximal oxygen uptake ( ) was 47.1 (SD 3.9) ml · min–1 · kg–1. After the physiological and psychological laboratory tests had been completed thef c of the subjects was monitored continuously during the guerilla slide and parachute jump by night, two emotionally stressful military tasks. Maximalf c (f c, max) attained during these events was 84.5% and 83% off c, max during CE (f c, max, CE), respectively. A significant relationship (r=–0.92,P<0.0002) betweenf c, max reached during the stressful tasks and was found only for the guerilla slide, which was preceded by physical strain, sleep deprivation and energy deficit. One subject with some prior experience in parachuting showed the lowestf c response and the lowest sympatho-adrenal activation in both events, independent of the degree of AF. In conclusion, AF was found to influence the sympatho-adrenal and fc response to acute, short-lasting emotional stress when the stressful event was aggravated by preceding physical strain, the magnitude of the stress response depending largely on individual experience and effective mechanisms for coping with specific stimuli.  相似文献   

19.
20.
Phospholipase D (PLD) is encoded by a multiple gene family, and several PLDs from Arabidopsis have been characterized at the molecular biological and biochemical levels. PLDalpha is the most abundant plant PLD and exhibits a number of different biochemical properties to the other isoforms. The other PLDs have many overlapping catalytic properties but display some unique patterns of expression during development and in response to stress cues. Accumulating data indicate that different PLDs have multiple and different roles in plant responses to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号