首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Endocannabinoids are a group of biologically active endogenous lipids that have recently emerged as important mediators in energy balance control. The two best studied endocannabinoids, anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the endogenous ligands of the central and peripheral cannabinoid receptors. Furthermore, AEA binds to the transient receptor potential vanilloid type-1 (TRPV1), a capsaicin-sensitive, non-selective cation channel. The synthesis of these endocannabinoids is catalyzed by the N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and the sn-1-selective diacylglycerol lipase (DAGL), whereas their degradation is accomplished by the fatty acid amide hydrolase (FAAH) and the monoglyceride lipase (MGL), respectively. We investigated the presence of a functional endocannabinoid system in human adipose tissue from seven healthy subjects. Subcutaneous abdominal adipose tissue underwent biochemical and molecular biology analyses, aimed at testing the expression of this system and its functional activity. AEA and 2-AG levels were detected and quantified by HPLC. Real time PCR analyzed the expression of the endocannabinoid system and immunofluorescence assays showed the distribution of its components in the adipose tissue. Furthermore, binding assay for the cannabinoid and vanilloid receptors and activity assay for each metabolic enzyme of the endocannabinoid system gave clear evidence of a fully operating system. The data presented herein show for the first time that the human adipose tissue is able to bind AEA and 2-AG and that it is endowed with the biochemical machinery to metabolize endocannabinoids.  相似文献   

2.
Recently, we have shown that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding of anandamide (AEA) to type-1 cannabinoid receptors (CB1R), followed by CB1R-dependent signaling via adenylate cyclase and p42/p44 MAPK activity. In the present study, we investigated whether type-2 cannabinoid receptors (CB2R), widely expressed in immune cells, also are modulated by MCD. We show that treatment of human DAUDI leukemia cells with MCD does not affect AEA binding to CB2R, and that receptor activation triggers similar [35S]guanosine-5'-O-(3-thiotriphosphate) binding in MCD-treated and control cells, similar adenylate cyclase and MAPK activity, and similar MAPK-dependent protection against apoptosis. The other AEA-binding receptor transient receptor potential channel vanilloid receptor subunit 1, the AEA synthetase N-acyl-phosphatidylethanolamine-phospholipase D, and the AEA hydrolase fatty acid amide hydrolase were not affected by MCD, whereas the AEA membrane transporter was inhibited (approximately 55%) compared with controls. Furthermore, neither diacylglycerol lipase nor monoacylglycerol lipase, which respectively synthesize and degrade 2-arachidonoylglycerol, were affected by MCD in DAUDI or C6 cells, whereas the transport of 2-arachidonoylglycerol was reduced to approximately 50%. Instead, membrane cholesterol enrichment almost doubled the uptake of AEA and 2-arachidonoylglycerol in both cell types. Finally, transfection experiments with human U937 immune cells, and the use of primary cells expressing CB1R or CB2R, ruled out that the cellular environment could account per se for the different modulation of CB receptor subtypes by MCD. In conclusion, the present data demonstrate that lipid rafts control CB1R, but not CB2R, and endocannabinoid transport in immune and neuronal cells.  相似文献   

3.
Endogenous levels of the endocannabinoid anandamide, and the activities of the synthesizing and hydrolyzing enzymes, i.e. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D and fatty acid amide hydrolase, respectively, were determined in the cortex and the striatum of rats subjected to transient middle cerebral artery occlusion. Anandamide content was markedly increased ( approximately 3-fold over controls; P < 0.01) in the ischemic striatum after 2 h of middle cerebral artery occlusion, but not in the cortex, and this elevation was paralleled by increased activity of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D ( approximately 1.7-fold; P < 0.01), and reduced activity ( approximately 0.6-fold; P < 0.01) and expression ( approximately 0.7-fold; P < 0.05) of fatty acid amide hydrolase. These effects of middle cerebral artery occlusion were further potentiated by 1 h of reperfusion, whereas anandamide binding to type 1 cannabinoid and type 1 vanilloid receptors was not affected significantly by the ischemic insult. Additionally, the cannabinoid type 1 receptor antagonist SR141716, but not the receptor agonist R-(+)-WIN55,212-2, significantly reduced (33%; P < 0.05) cerebral infarct volume detected 22 h after the beginning of reperfusion. A neuroprotective intraperitoneal dose of 17beta-estradiol (0.20 mg x kg(-1)) that reduced infarct size by 43% also minimized the effect of brain ischemia on the endocannabinoid system, in an estrogen receptor-dependent manner. In conclusion, we show that the endocannabinoid system is implicated in the pathophysiology of transient middle cerebral artery occlusion-induced brain damage, and that neuroprotection afforded by estrogen is coincident with a re-establishment of anandamide levels in the ischemic striatum through a mechanism that needs to be investigated further.  相似文献   

4.
Anandamide (N-arachidonoylethanolamide; AEA) acts as an endogenous agonist of both cannabinoid and vanilloid receptors. During the last two decades, its metabolic pathways and biological activity have been investigated extensively and relatively well characterized. In contrast, at present, the effective nature and mechanism of AEA transport remain controversial and still unsolved issues. Here, we report the characterization of a biotinylated analog of AEA (b-AEA) that has the same lipophilicity of the parent compound. In addition, by means of biochemical assays and fluorescence microscopy, we show that b-AEA is accumulated inside the cells in a way superimposable on that of AEA. Conversely, b-AEA does not interact or interfere with the other components of the endocannabinoid system, such as type-1 and type-2 cannabinoid receptors, vanilloid receptor, AEA synthetase (N-acylphosphatidylethanolamine-hydrolyzing phospholipase D), or AEA hydrolase (fatty acid amide hydrolase). Together, our data suggest that b-AEA could be a very useful probe for visualizing the accumulation and intracellular distribution of this endocannabinoid.  相似文献   

5.
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors.Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.  相似文献   

6.
N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine). In the present study we investigated these biosynthetic mechanisms and report that NADA synthesis requires TH in dopaminergic terminals; however, NA-tyrosine, which we identify here as an endogenous lipid, is not an intermediate. We show that NADA biosynthesis primarily occurs through an enzyme-mediated conjugation of arachidonic acid with dopamine. While this conjugation likely involves a complex of enzymes, our data suggest a direct involvement of fatty acid amide hydrolase in NADA biosynthesis either as a rate-limiting enzyme that liberates arachidonic acid from AEA, or as a conjugation enzyme, or both.  相似文献   

7.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

8.
Our knowledge of the function of the cannabinoid system in the body has been aided by the availability of pharmacological agents that affect its function. This has been achieved by the design of agents that either directly interact with the receptor (agonists and antagonist/inverse agonists) and agents that indirectly modulate the receptor output by changing the levels of the endogenous cannabinoids (endocannabinoids). In this review, examples of the most commonly used receptor agonists, antagonists/inverse agonists, and indirectly acting agents (anandamide uptake inhibitors, fatty acid amide hydrolase inhibitors, monoacylglycerol lipase inhibitors) are given, with particular focus upon their selectivity and, in the case of the directly acting compounds, efficacy. Finally, the links between the endocannabinoid and cyclooxygenase pathways are explored, in particular, with respect to agents whose primary function is to inhibit cyclooxygenase activity, but which also interact with the endocannabinoid system.  相似文献   

9.
Endocannabinoids are bioactive lipids, that comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied endocannabinoids, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol, the psychoactive principle of hashish and marijuana. It is known that the activity of endocannabinoids at their receptors is limited by cellular uptake through specific membrane transporters, followed by intracellular degradation by a fatty acid amide hydrolase (for AEA and partly 2-AG) or by a monoacylglycerol lipase (for 2-AG). Together with AEA, 2-AG and congeners, the proteins that bind, transport and metabolize these lipids form the "endocannabinoid system". This new system will be briefly presented in this review, in order to put in a better perspective the role of the endocannabinoid pathway in neurodegenerative disorders, like Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of endocannabinoid receptors, or of inhibitors of endocannabinoid metabolism, as next-generation therapeutics will be discussed.  相似文献   

10.
Cannabinergic ligands   总被引:4,自引:0,他引:4  
The understanding of the pharmacology surrounding the cannabinergic system has seen many advances since the discovery of the CB1 receptor in the mammalian brain and the CB2 receptor in the periphery. Among these advances is the discovery of the endogenous ligands arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol amide (2-AG), which are selective agonists for the CB1 and CB2 receptors, respectively. These endogenous neuromodulators involved in the cannabinergic system are thought to be produced on demand and are metabolized by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAG lipase). Recently, we characterized a reuptake system that facilitates the transport of anandamide across the cell membrane and subsequently developed selective inhibitors of this transport, which have been found to have therapeutic potential as analgesic and peripheral vasodilators. The cannabinergic proteins currently being explored, which include the CB1 and CB2 receptors, FAAH and the anandamide transporter, are excellent targets for the development of therapeutically useful drugs for a range of conditions including pain, loss of appetite, immunosuppression, peripheral vascular disease and motor disorders. As cannabinoid research has progressed, various potent and selective cannabimimetic ligands, targeting these four cannabinoid proteins, have been designed and synthesized. Many of these ligands serve as important molecular probes, providing structural information regarding the binding sites of the cannabinergic proteins, as well as pharmacological tools, which have been playing pivotal roles in research aimed at understanding the biochemical and physiological aspects of the endocannabinoid system. This review will focus on some of the current cannabinergic ligands and probes and their pharmacological and therapeutic potential.  相似文献   

11.
Endocannabinoids are fatty acid amides like anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol, that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Their biological actions are controlled through not yet fully characterized cellular mechanisms. These compounds, together with their related enzymes, that include key proteins for the synthesis and degradation of endocannabinoids, cannabinoid and non-cannabinoid receptors, and purported membrane transporter(s), form the “endocannabinoid system (ECS)”. In the past few years AEA and related ECS elements have emerged as essential players in various aspects of human reproduction, both for males and females. Here, the key features of the ECS and the potential of its components to direct human fertility towards a positive or negative end will be reviewed. In particular, the involvement of AEA and related ECS elements in regulating embryo oviductal transport, blastocyst implantation and placental development (in females), and sperm survival, motility, capacitation and acrosome reaction (in males) will be addressed, as well as the role of endocannabinoids in sperm–oviduct interactions. Additionally, the possibility that blood AEA and its hydrolase FAAH may represent reliable diagnostic markers of natural and assisted reproduction in humans will be discussed, along with the therapeutic exploitation of ECS-oriented drugs as useful fertility enhancers.  相似文献   

12.
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.  相似文献   

13.
The recent demonstrations that cyclooxygenase-2 and leukocyte-type 12-lipoxygenase (LOX) efficiently oxygenate 2-arachidonylglycerol (2-AG) prompted an investigation into related oxygenases capable of metabolizing this endogenous cannabinoid receptor ligand. We evaluated the ability of six LOXs to catalyze the hydroperoxidation of 2-AG. Soybean 15-LOX, rabbit reticulocyte 15-LOX, human 15-LOX-1, and human 15-LOX-2 oxygenate 2-AG, providing 15(S)-hydroperoxyeicosatetraenoic acid glyceryl ester. In contrast, potato and human 5-LOXs do not efficiently metabolize this endocannabinoid. Among a series of structurally related arachidonyl esters, arachidonylglycerols serve as the preferred substrates for 15-LOXs. Steady-state kinetic analysis demonstrates that both 15-LOX-1 and 15-LOX-2 oxygenate 2-AG comparably or preferably to arachidonic acid. Furthermore, 2-AG treatment of COS-7 cells transiently transfected with human 15-LOX expression vectors or normal human epidermal keratinocytes results in the production and extracellular release of 15-hydroxyeicosatetraenoic acid glyceryl ester (15-HETE-G), establishing that lipoxygenase metabolism of 2-AG occurs in an eukaryotic cellular environment. Investigations into the potential biological actions of 15-HETE-G indicate that this lipid, in contrast to its free-acid counterpart, acts as a peroxisome proliferator-activated receptor alpha agonist. The results demonstrate that 15-LOXs are capable of acting on 2-AG to provide 15-HETE-G and elucidate a potential role for endocannabinoid oxygenation in the generation of peroxisome proliferator-activated receptor alpha agonists.  相似文献   

14.
Anandamide (N-arachidonoylethanolamine) has been identified as an endogenous ligand of the G-protein coupled cannabinoid CB(1) receptor. Recent studies have postulated the existence of carrier-mediated anandamide transport which is involved in the termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellulary, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-arachidonoylglycerol (2-AG). Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors, the anandamide transporter and FAAH are currently emerging in the literature. This review considers the divergences between these SARs and focuses upon the conformational implications for endocannabinoid recognition at each of these biological targets.  相似文献   

15.
Many aspects of the physiology and pharmacology of anandamide (arachidonoyl ethanol amide), the first endogenous cannabinoid ligand ("endocannabinoid") isolated from pig brain, have been studied since its discovery in 1992. Ethanol amides from other fatty acids have also been identified as endocannabinoids with similar in vivo and in vitro pharmacological properties. 2-Arachidonoyl glycerol and noladin ether (2-arachidonyl glyceryl ether), isolated in 1995 and 2001, respectively, so far, display pharmacological properties in the central nervous system, similar to those of anandamide. The endocannabinoids are widely distributed in brain, they are synthesized and released upon neuronal stimulation, undergo reuptake and are hydrolyzed intracellularly by fatty acid amide hydrolase (FAAH). For therapeutic purposes, inhibitors of FAAH may provide more specific cannabinoid activities than direct agonists, and several such molecules have already been developed.Pharmacological effects of the endocannabinoids are very similar, yet not identical, to those of the plant-derived and synthetic cannabinoid receptor ligands. In addition to pharmacokinetic explanations, direct or indirect interactions with other receptors have been considered to explain some of these differences, including activities at serotonin and GABA receptors. Binding affinities for other receptors such as the vanilloid receptor, have to be taken into account in order to fully understand endocannabinoid physiology. Moreover, possible interactions with receptors for the lysophosphatidic acids deserve attention in future studies.Endocannabinoids have been implicated in a variety of physiological functions. The areas of central activities include pain reduction, motor regulation, learning/memory, and reward. Finally, the role of the endocannabinoid system in appetite stimulation in the adult organism, and perhaps more importantly, its critical involvement in milk ingestion and survival of the newborn, may not only further our understanding of the physiology of food intake and growth, but may also find therapeutic applications in wasting disease and infant's "failure to thrive".  相似文献   

16.
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.  相似文献   

17.
Although endogenous cannabinoid systems have been implicated in the modulation of the rewarding effects of abused drugs and food, little is known about the direct effects of endogenous ligands for cannabinoid receptors on brain reward processes. Here we show for the first time that the intravenous administration of anandamide, an endogenous ligand for cannabinoid receptors, and its longer-lasting synthetic analog methanandamide, increase the extracellular dopamine levels in the nucleus accumbens shell of awake, freely moving rats, an effect characteristic of most drugs abused by humans. Anandamide produced two distinctly different effects on dopamine levels: (1) a rapid, transient increase that was blocked by the cannabinoid CB1 receptor antagonist rimonabant, but not by the vanilloid VR1 receptor antagonist capsazepine, and was magnified and prolonged by the fatty acid amide hydrolase (FAAH) enzyme inhibitor, URB597; (2) a smaller delayed and long-lasting increase, not sensitive to CB1, VR1 or FAAH blockade. Both effects were blocked by infusing either tetrodotoxin (TTX, 1 microm) or calcium-free Ringer's solution through the microdialysis probe, demonstrating that they were dependent on the physiologic activation of dopaminergic neurotransmission. Thus, these results indicate that anandamide, through the activation of the mesolimbic dopaminergic system, participates in the signaling of brain reward processes.  相似文献   

18.
In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH.Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist.  相似文献   

19.
A cannabinoid receptor orthologue (CiCBR) has been described in the sea squirt Ciona intestinalis. Here we report that CiCBR mRNA expression is highest in cerebral ganglion, branchial pharynx, heart and testis of C. intestinalis, and that this organism also contains cannabinoid receptor ligands and some of the enzymes for ligand biosynthesis and inactivation. Using liquid chromatography-mass spectrometry, the endocannabinoid anandamide was found in all tissues analysed (0.063-5.423 pmol/mg of lipid extract), with the highest concentrations being found in brain and heart. The endocannabinoid 2-arachidonoylglycerol (2-AG) was fivefold more abundant than anandamide, and was most abundant in stomach and intestine and least abundant in heart and ovaries (2.677-50.607 pmol/mg of lipid extract). Using phylogenomic analysis, we identified orthologues of several endocannabinoid synthesizing and degrading enzymes. In particular, we identified and partly sequenced a fatty acid amide hydrolase (FAAH) orthologue, showing 44% identity with human FAAH and containing nearly all the amino acids necessary for a functional FAAH enzyme. Ciona intestinalis also contained specific binding sites for cannabinoid receptor ligands, and an amidase enzyme with pH-dependency and subcellular/tissue distribution similar to mammalian FAAHs. Finally, a typical C. intestinalis behavioural response, siphon reopening after closure induced by mechanical stimulation, was inhibited by the cannabinoid receptor agonist HU-210, and this effect was significantly attenuated by mammalian cannabinoid receptor antagonists.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号