首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
Lipoxygenase (LOX) activity and gene expression have been described previously to be induced in tobacco by fungal infection and elicitor treatment. We now report that LOX activity is induced in tobacco cell suspensions by treatment with methyl jasmonate (MeJa). This compound had no effect on the in vitro activity of tobacco LOX. Induction of LOX activity is a dose-dependent response with a maximum around 890 μM MeJa. Linolenic acid, the precursor for jasmonate synthesis, also induces LOX activity. When applied together with fungal elicitor, linolenic acid drastically increases and prolongs the induction of LOX activity. LOX activity and gene expression in elicited tobacco cells are partially inhibited by pretreatment with eicosatetraynoic acid (ETYA), a potent inhibitor of tobacco LOX in vitro. The induction by methyl jasmonate, in contrast, was not inhibited by ETYA pretreatment. These data suggest that induction of LOX gene expression and activity upon elicitation are regulated at least partially by LOX products. © Académie des Sciences/ Elsevier, Paris  相似文献   

2.
Early, signal transduction-related responses in cultured tobacco cells due to methyl jasmonate (MeJa), a cell-wall-derived elicitor from Phytophthora nicotianae and chitosan, were investigated. MeJa was an effective inducer of lipid peroxidation and lipoxygenase (LOX) activity with maximum levels reached within 2 h and 4–8 h, respectively. Chitosan and the elicitor induced a transient increase (1–4 h) in lipid peroxidation. Conditioning with MeJA, followed by secondary elicitation, led to a significant increase in malondialdehyde concentration after 1 h. Chitosan and the elicitor induced transient activation of LOX with maximal values between 8 and 12 h, with preconditioning resulting in a rapid increase in LOX activity at 4 h post elicitation. MeJA did not effect phosphoprotein accumulation but conditioning led to the potentiation and differential induction of phosphoproteins due to chitosan and elicitor. The results indicate that cells are sensitized by the exposure to MeJa to respond more intensely and rapidly toward secondary elicitation by fungal pathogen derived elicitors.  相似文献   

3.
A glycopeptide elicitor prepared from germ tubes of the rust fungus Puccinia graminis Pers. f. sp. tritici Erikss. & Henn (Pgt), as well as chitin oligosaccharides, chitosan, and methyl jasmonate (MJ) stimulated lipoxygenase (LOX) activity (E.C. 1.13.11.12) in wheat (Triticum aestivum) leaves. Immunoblot analysis using anti-LOX antibodies revealed the induction of 92- and 103-kD LOX species after Pgt elicitor treatment. In contrast, MJ treatment led to a significant increase of a 100-kD LOX species, which was also detected at lower levels in control plants. The effects of chitin oligomers and chitosan resembled those caused by MJ. In conjunction with other observations the results suggest that separate reaction cascades exist, and that jasmonates may not be involved in Pgt elicitor action. LOX-92 appears to be mainly responsible for the increase in LOX activity after Pgt elicitor treatment because its appearance on western blots coincided with high LOX activity in distinct anion-exchange chromatography fractions. It is most active at pH 5.5 to 6.0, and product formation from linoleic and [alpha]-linolenic acid is clearly in favor of the 9-LOOHs. It is interesting that a 92-kD LOX species, which seems to correspond to the Pgt elicitor-induced LOX species, was also detected in rust-inoculated leaves.  相似文献   

4.
The involvement of lipoxygenase (LOX, EC 1.13.11.12) in elicitor-induced opium poppy defense response was investigated. Papaver somniferum L. suspension cultures were treated with abiotic elicitor methyl jasmonate (MJ), fungal elicitor (Botrytis cinerea homogenate) and phenidone (specific inhibitor of LOX) to determine the involvement of this enzyme in production of sanguinarine, the major secondary metabolite of opium poppy cultures. P. somniferum suspension cultures responded to elicitor treatment with strong and transient increase of LOX activity followed by sanguinarine accumulation. LOX activity increased in elicited cultures, reaching 9.8 times of the initial value at 10 h after MJ application and 2.9 times after B. cinerea application. Sanguinarine accumulated to maximal levels of 169.5 ± 12.5 μg g?1 dry cell weight in MJ-elicited cultures and 288.0 ± 10.0 μg g?1 dry cell weight in B. cinerea-elicited cultures. The treatment of cells with phenidone before elicitor addition, significantly reduced sanguinarine production. The relative molecular weight of P. somniferum LOX (83 kDa) was estimated by using immunobloting and its pH optimum was shown to be pH 6.5.  相似文献   

5.
6.
Lipopolysaccharides (LPS), ubiquitous cell surface components of Gram-negative bacteria, are directly implicated in plant/pathogen interactions. However, their perception by the plant, the subsequent signal transduction in both compatible and incompatible interactions, as well as the defence reactions induced in compatible interactions are as yet poorly understood. We focused on biochemical and physiological reactions induced in cell suspensions of three Solanaceae species (tobacco, tomato, and potato) by purified lipopolysaccharides from PECTOBACTERIUM ATROSEPTICUM (PA), a pathogen of potato, and PSEUDOMONAS CORRUGATA (PSC), a pathogen of tomato. LPS PA and LPS PSC caused a significant acidification of potato, tomato, and tobacco extracellular media, whereas laminarin (a linear beta-1,3 oligosaccharide elicitor) induced an alkalinisation in tobacco and tomato, but not in potato cell suspensions. None of the two LPS induced the formation of active oxygen species in any of the hosts, while laminarin induced H (2)O (2) production in cells of tobacco but not of tomato and potato. In tomato cells, LPS PA and LPS PSC induced a strong but transitory stimulation of lipoxygenase activity, whereas laminarin induced a stable or slightly increasing LOX activity over the first 24 h of contact. In tobacco, LOX activity was not triggered by either LPS, but significantly increased following treatment with laminarin. In potato, neither LPS nor laminarin induced LOX activity, in contrast with concentrated culture filtrate of PHYTOPHTHORA INFESTANS (CCF). These results demonstrate that LPS, as well as laminarin, are perceived in different ways by SOLANACEAE species, and possibly cultivars. They also suggest that defence responses modulated by LPS depend on plant genotypes rather than on the type of interaction.  相似文献   

7.
Potato (Solanum tuberosum) hairy root cultures, established by infecting potato tuber discs with Agrobacterium rhizogenes, were used as a model system for the production of antimicrobial sesquiterpenes and lipoxygenase (LOX) metabolites. Of the four sesquiterpene phytoalexins (rishitin, lubimin, phytuberin and phytuberol) detected in elicitor-treated hairy root cultures, rishitin (213 g g–1 dry wt) was the most predominant followed by lubimin (171 g g–1 dry wt). The elicitors also induced LOX activity (25-fold increase) and LOX metabolites, mainly 9-hydroxyoctadecadienoic acid and 9-hydroxyoctadecatrienoic acid, in potato hairy root cultures. The combination of fungal elicitor plus cyclodextrin was the most effective elicitor treatment, followed by methyl jasmonate plus cyclodextrin in inducing sesquiterpenes and LOX metabolites.  相似文献   

8.
Scots pine (Pinus sylvestris L., Pinaceae) produces a terpenoid resin which consists of monoterpenes and resin acids that offer protection against herbivores and pathogen attacks. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defence reactions in conifers and might be used to increase resistance against biotic damage. Different amounts of MJ (control, 10 mm , and 100 mm ) were applied to Scots pine to examine the vigour, physiology, herbivory performance, and induction of secondary compound production in needles, bark, and xylem of 2‐year‐old Scots pine seedlings. Growth decreased significantly in both MJ treated plants, and photosynthesis decreased in the 100 mm MJ treated plants, when compared to 10 mm MJ or control plants. The large pine weevil (Hylobius abietis L.) (Coleoptera: Curculionidae) gnawed a significantly smaller area of stem bark in the 100 mm treated plants than in the control or 10 mm treated plants. The 100 mm MJ treatment increased the resin acid concentration in the needles and xylem but not in the bark. Furthermore, both MJ treatments increased the number of resin ducts in newly developing xylem. The changes in plant growth and chemical parameters after the MJ treatments indicate shifts in carbon allocation, but MJ also affects plant physiology and xylem development. Terpenoid resin production was tissue‐specific, but generally increased after MJ treatments, which means that this compound may offer potential protection of conifers against herbivores.  相似文献   

9.
Oxylipins are a newly emerging group of signals that serve defence roles or promote virulence. To identify specific host and fungal genes and oxylipins governing the interactions between maize and Fusarium verticillioides, maize wild‐type and lipoxygenase3 (lox3) mutant were inoculated with either F. verticillioides wild‐type or linoleate‐diol‐synthase 1‐deleted mutant (ΔFvlds1D). The results showed that lox3 mutants were more resistant to F. verticillioides. The reduced colonization on lox3 was associated with reduced fumonisin production and with a stronger and earlier induction of ZmLOX4, ZmLOX5 and ZmLOX12. In addition to the reported defence function of ZmLOX12, we showed that lox4 and lox5 mutants were more susceptible to F. verticillioides and possessed decreased jasmonate levels during infection, suggesting that these genes are essential for jasmonic acid (JA)‐mediated defence. Oxylipin profiling revealed a dramatic reduction in fungal linoleate diol synthase 1 (LDS1)‐derived oxylipins, especially 8‐HpODE (8‐hydroperoxyoctadecenoic acid), in infected lox3 kernels, indicating the importance of this molecule in virulence. Collectively, we make the following conclusions: (1) LOX3 is a major susceptibility factor induced by fungal LDS1‐derived oxylipins to suppress JA‐stimulating 9‐LOXs; (2) LOX3‐mediated signalling promotes the biosynthesis of virulence‐promoting oxylipins in the fungus; and (3) both fungal LDS1‐ and host LOX3‐produced oxylipins are essential for the normal infection and colonization processes of maize seed by F. verticillioides.  相似文献   

10.
Jasmonates enhance the expression of various genes involved in terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus. We applied precursor feeding to our C. roseus suspensions to determine how methyl jasmonate (MJ) alters the precursor availability for TIA biosynthesis. C. roseus suspensions were induced with MJ (100 μM) on day 6 and fed loganin (0.30 mM), tryptamine (0.15 mM), loganin plus tryptamine, or geraniol (0.1–1.0 mM) on day 7. While MJ increased ajmalicine production by 3-fold, induced cultures were still limited by terpenoid precursors. However, both induced and non-induced cultures became tryptamine-limited with excess loganin. Geraniol feeding also increased ajmalicine production in non-induced cultures. But MJ appeared to increase geraniol availability in induced cultures, due presumably to the increased expression of Dxs with MJ addition.  相似文献   

11.
脂氧合酶在诱导红豆杉细胞产紫杉醇中的作用   总被引:2,自引:0,他引:2  
对红豆杉悬浮培养细胞中脂氧合酶(LOX)在诱导子诱导紫杉醇合成中的作用进行了探讨。结果表明真菌诱导子处理可提高细胞内LOX的活性和紫杉醇的产量,而诱导前用LOX抑制剂菲尼酮处理,可完全抑制诱导子对LOX活性和紫杉醇合成的诱导作用。说明LOX途径可能参与了紫杉醇的合成过程。外加茉莉酸甲酯也可激活LOX活性和紫杉醇合成,诱导前用菲尼酮处理可抑制诱导子诱导的LOX活性和紫杉醇合成,说明外源茉莉酸甲酯可能是通过激活细胞内LOX途径而启动下游紫杉醇的合成。为了进一步研究脂氧合酶在紫杉醇合成中的作用。我们还对红豆杉细胞脂氧合酶的分布和分子量等性质进行了研究。  相似文献   

12.
bstract Suspension cultures of Coleus blumei (Lamiaceae) treated with either an elicitor preparation from the culture medium of the phytopathogenic oomycete Pythium aphanidermatum or with methyl jasmonate enhanced accumulation of rosmarinic acid approximately threefold. The specific activities of phenylalanine ammonia lyase and rosmarinic acid synthase were also enhanced after addition of the fungal elicitor. The addition of methyl jasmonate transiently increased activities of phenylalanine ammonia lyase and hydroxyphenylpyruvate reductase, whereas the activity of rosmarinic acid synthase was not stimulated and the activity of tyrosine aminotransferase was slightly and constantly enhanced. Methyl jasmonate stimulated rosmarinic acid accumulation not only when added directly to the culture medium, but also when it could reach the cells only via the gas phase. Received: 2 April 1997 / Revision received:16 June 1997 / Accepted: 15 September 1997  相似文献   

13.
14.
比较了茉莉酸甲酯与真菌诱导物、水杨酸组合对红豆杉细胞几个抗病相关指标(POD、CAT活力、H2O2含量)及紫杉醇含量的影响,3种信号分子的组合对POD、CAT、H2O2及紫杉醇含量的影响是不一致的,MJ单独添加,MJ与SA联合作用以及MJ与F5联合作用都可使POD活力增加,且12h后H2O2含量均升高,约在48h达到高峰,为对照的2倍左右,但72h后,MJ单独添加和MJ与SA联合作用组中H2O2含量变化不大,F5与MJ联合作用则使H2O2含量持续比对照高。MJ单独添加使CAT酶活在144h后才较对照低,F5、SA的加入都可使CAT酶活下降,SA的作用更显著。说明三者的诱导途径并不完全一样,以SA和MJ联合添加对紫杉醇合成的促进作用最大,含量达到细胞干重的0.04%。  相似文献   

15.
The Ceratocystis fimbriata f.sp. platani 66 kDa glycoprotein elicitor-induced secretion of soluble coumarins by plane tree (Platanus acerifolia (Aiton) Wild) cell-suspension cultures was investigated by studying the possible involvement of the octadecanoid pathway in the cell response. When cell-suspension cultures were treated with the glycoprotein elicitor, the cells exhibited a rapid and transient increase in lipoxygenase activity, in synthesis of endogenous jasmonic acid prior to the accumulation of coumarin phytoalexins. The treatment of cells with an inhibitor of lipoxygenase (ETYA) before elicitor addition, drastically reduced the lipoxygenase activity, the production of endogenous jasmonic acid and phytoalexin accumulation. The results demonstrate the role of the jasmonate pathway in the intracellular signal cascade.  相似文献   

16.
 In order to determine why the activated methyl cycle is up-regulated in plants undergoing defence responses to fungal pathogens we have monitored the utilisation of methyl groups derived from methionine in cell-suspension cultures of alfalfa (Medicago sativa L.) treated for various times with fungal elicitor, by carrying out a parallel labelling study with [35S]methionine and [methyl-3H]methionine. The distribution of the two radiolabels among the medium, soluble cellular components and cell wall was then determined. In the absence of elicitor the utilisation of the two radiolabels was similar. However, in the presence of the elicitor the total incorporation of radioactivity from [methyl-3H]methionine into metabolites was far greater than from [35S]methionine, indicating that the methyl label had been utilised in methylation reactions. Elicitor treatment resulted in up to a sixfold increase in the use of 3H-methyl groups in the methylation of hydrophobic metabolites. In the period 0–24 h after elicitor treatment, increased methylation was directed largely into the synthesis of the isoflavonoid phytoalexin medicarpin and related metabolites. Newly synthesized phytoalexins were exported into the medium, while a significant proportion of the medicarpin accumulating in the cell in the early stages of elicitation was derived from the hydrolysis of its respective conjugate. Elicitor treatment also modified the incorporation of 3H-methyl groups into the cell wall. Between 0 and 24 h after elicitor treatment the methylation of pectin in the cell wall declined. After 24 h, pectin methylation recovered and was associated with an increase in the methylation of other wall-bound polysaccharide components. Since no other major metabolic sink for the increased methylation was determined we conclude that the increased activity of the activated methyl cycle during defence interactions in alfalfa is required to support phytoalexin synthesis and cell wall modifications. Received: 1 August 1996 / Accepted: 24 October 1996  相似文献   

17.
18.
19.
We have previously isolated three tobacco genes (NtPat) encoding patatin-like proteins, getting rapidly induced during the hypersensitive response (HR) to tobacco mosaic virus, in advance to jasmonate accumulation. NtPAT enzymes are lipid acyl hydrolases that display high phospholipase A2 (PLA2) activity and may mobilize fatty acid precursors of oxylipins. Here, we performed a detailed study of NtPat gene regulation under various biotic and abiotic stresses. PLA2 activity was poorly induced in response to drought, wounding, reactive oxygen intermediates, salicylic acid (SA) or methyl-jasmonate (MJ) whereas the ethylene (ET) precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), provoked a moderate induction. In contrast, PLA2 activity was strongly induced when ACC was combined with MJ, and in response to the bacterium Erwinia carotovora or to the fungus Botrytis cinerea, as well as to treatment with beta-megaspermin, a cell death-inducing protein elicitor. A simplified system based on the infiltration of beta-megaspermin into leaves was used to dissect the spatio-temporal activation of PLA2 activity with regards to the accumulation of jasmonates and to the influence of endogenous SA. NtPat-encoded PLA2 activity was rapidly induced in the infiltrated zone before the appearance of cell death and with some delay in the surrounding living cells. A massive accumulation of 12-oxo-phytodienoic and jasmonic acids occurred in the elicitor-infiltrated zone, but only low levels were detectable outside this area. A similar picture was found in SA-deficient plants, showing that in tobacco, accumulation of jasmonates is not affected by the concomitant HR-induced build-up of endogenous SA. Finally, ET-insensitive plants showed a weakened induction of PLA2 activity outside the elicitor-infiltrated tissue.  相似文献   

20.
The influence of phytohormones, salicylic acid (SA) and methyl jasmonate (MJ) on the antioxidant systems in Haematococcus pluvialis was investigated. Both SA and MJ at 500 μM concentration reduced the growth of alga with salicylic acid, having more pronounced effect. Carotenoid and chlorophyll contents were decreased by SA and increased by MJ. Salicylic acid (100 μM) increased astaxanthin content to 6.8-fold under low light (30 μmol m−2 s−1), while MJ (10 μM) showed marginal increase in astaxanthin. Salicylic acid (500 μM) increased superoxide dismutase activity to 4.5- and 3.3-fold and ascorbate peroxidase (APX) activity to 15.5- and 7.1-fold under low and high light, respectively. Methyl jasmonate increased catalase activity (1.4-fold) under high light and APX activity (5.4-fold) under low light. Different mechanism of oxidative stress induced antioxidant production may be the plausible reason for this varied response for salicylic acid and methyl jasmonate. Higher concentrations of SA and MJ inhibited astaxanthin accumulation by different mechanisms either by scavenging the free radicals or by increasing primary carotenoids production. At lower concentrations, these phytohormones could be used for elicitation of secondary carotenoid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号