首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collagen II fibrils are a critical structural component of the extracellular matrix of cartilage providing the tissue with its unique biomechanical properties. The self-assembly of collagen molecules into fibrils is a spontaneous process that depends on site-specific binding between specific domains belonging to interacting molecules. These interactions can be altered by mutations in the COL2A1 gene found in patients with a variety of heritable cartilage disorders known as chondrodysplasias. Employing recombinant procollagen II, we studied the effects of R75C or R789C mutations on fibril formation. We determined that both R75C and R789C mutants were incorporated into collagen assemblies. The effects of the R75C and R789C substitutions on fibril formation differed significantly. The R75C substitution located in the thermolabile region of collagen II had no major effect on the fibril formation process or the morphology of fibrils. In contrast, the R789C substitution located in the thermostable region of collagen II caused profound changes in the morphology of collagen assemblies. These results provide a basis for identifying pathways leading from single amino acid substitutions in collagen II to changes in the structure of individual fibrils and in the organization of collagenous matrices.  相似文献   

2.
We have shown recently that glycosylation of threonine in the peptide Ac-(Gly-Pro-Thr)(10)-NH(2) with beta-d-galactose induces the formation of a collagen triple helix, whereas the nonglycosylated peptide does not. In this report, we present evidence that a collagen triple helix can also be formed in the Ac-(Gly-Pro-Thr)(10)-NH(2) peptide, if the proline (Pro) in the Xaa position is replaced with 4-trans-hydroxyproline (Hyp). Furthermore, replacement of Pro with Hyp in the sequence Ac-(Gly-Pro-Thr(beta-d-Gal))(10)-NH(2) increases the T(m) of the triple helix by 15.7 degrees C. It is generally believed that Hyp in the Xaa position destabilizes the triple helix because (Pro-Pro-Gly)(10) and (Pro-Hyp-Gly)(10) form stable triple helices but the peptide (Hyp-Pro-Gly)(10) does not. Our data suggest that the destabilizing effect of Hyp relative to Pro in the Xaa position is only true in the case of (Hyp-Pro-Gly)(10). Increasing concentrations of galactose in the solvent stabilize the triple helix of Ac-(Gly-Hyp-Thr)(10)-NH(2) but to a much lesser extent than that achieved by covalently linked galactose. The data explain some of the forces governing the stability of the annelid/vestimentiferan cuticle collagens.  相似文献   

3.
4.
The structural integrity of cartilage depends on the presence of extracellular matrices (ECM) formed by heterotypic fibrils composed of collagen II, collagen IX, and collagen XI. The formation of these fibrils depends on the site-specific binding between relatively small regions of interacting collagen molecules. Single amino acid substitutions in collagen II change the physicochemical and structural characteristics of those sites, thereby leading to an alteration of intermolecular collagen II/collagen IX interaction. Employing a biosensor to study interactions between R75C, R789C or G853E collagen II mutants and collagen IX, we demonstrated significant changes in the binding affinities. Moreover, analyses of computer models representing mutation sites defined exact changes in physicochemical characteristics of collagen II mutants. Our study shows that changes in collagen II/collagen IX affinity could represent one of the steps in a cascade of changes occurring in the ECM of cartilage as a result of single amino acid substitutions in collagen II.  相似文献   

5.
Many studies have demonstrated that the third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is a major determinant of coreceptor tropism. Other regions in the surface gp120 subunit of Env can modulate coreceptor tropism in a manner that is not fully understood. In this study, we evaluated the effect of env determinants outside of V3 on coreceptor usage through the analysis of (i) patient-derived env clones that differ in coreceptor tropism, (ii) chimeric env sequences, and (iii) site-directed mutants. The introduction of distinct V3 sequences from CXCR4-using clones into an R5-tropic env backbone conferred the inefficient use of CXCR4 in some but not all cases. Conversely, in many cases, X4- and dual-tropic env backbones containing the V3 sequences of R5-tropic clones retained the ability to use CXCR4, suggesting that sequences outside of the V3 regions of these CXCR4-using clones were responsible for CXCR4 use. The determinants of CXCR4 use in a set of dual-tropic env sequences with V3 sequences identical to those of R5-tropic clones mapped to the gp41 transmembrane (TM) subunit. In one case, a single-amino-acid substitution in the fusion peptide of TM was able to confer CXCR4 use; however, TM substitutions associated with CXCR4 use varied among different env sequences. These results demonstrate that sequences in TM can modulate coreceptor specificity and that env sequences other than that of V3 may facilitate efficient CXCR4-mediated entry. We hypothesize that the latter plays an important role in the transition from CCR5 to CXCR4 coreceptor use.  相似文献   

6.
The hydration of the collagen-like Ac-(Gly-Pro-Hyp)(6)-NH(2) triple-helical peptide in solution was investigated using an integrated set of high-resolution NMR hydration experiments, including different recently developed exchange-network editing methods. This approach was designed to explore the hydration dynamics in the proximity of labile groups, such as the hydroxyproline hydroxyl group, and revealed that the first shell of hydration in collagen-like triple helices is kinetically labile with upper limits for water molecule residence times in the nanosecond to sub-nanosecond range. This result is consistent with a "hopping" hydration model in which solvent molecules are exchanged in and out of solvation sites at a rate that is not directly correlated to the degree of site localization. The hopping model thus reconciles the dynamic view of hydration revealed by NMR with the previously suggested partially ordered semi-clathrate-like cylinder of hydration. In addition, the nanosecond to sub-nanosecond upper limits for water molecule residence times imply that hydration-dehydration events are not likely to be the rate-limiting step for triple helix self-recognition, complementing previous investigations on water dynamics in collagen fibers. This study has also revealed labile proton features expected to facilitate the characterization of the structure and folding of triple helices in collagen peptides.  相似文献   

7.
The properties of collagen are affected by the replacement of Pro by imino acid analogues. The structural effect of the low-level local substitution of L -azetidine-2-carboxylic acid (Aze) has been analyzed by computing the energy of CH3CO-(Gly-Pro-Pro)4-NHCH3 triple helices in which a single residue of one strand has been replaced by Aze. When Aze is in position Y of a (Gly-X-Y) unit, low-energy local deformations are introduced in the triple helix, i.e., it becomes more flexible. On the other hand, the flexibility of the triple helix is not increased with Aze in position X. The energy of the triple helix to coil transition is not changed significantly by this amount of substitution. In an earlier study, we have demonstrated that the regular substitution of Aze in every tripeptide distorts or destabilizes the triple helix to a large extent [A. Zagari, G. Némethy, & H. A. Scheraga (1990) Biopolymers, Vol. 30, pp. 967–974 ]. Thus, it appears that a high level of substitution is required to cause the observed chemical and biological effects of Aze on collagen. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
D S Auld  G J Pielak 《Biochemistry》1991,30(35):8684-8690
The interaction of the N- and C-terminal helices is a hallmark of the cytochrome c family. Oligodeoxyribonucleotide-directed random mutagenesis within the gene encoding the C102T protein variant of Saccharomyces cerevisiae iso-1-cytochrome c was used to generate a library of mutations at the evolutionary invariant residues Gly-6 and Phe-10 in the N-terminal helix. Transformation of this library (contained on a low-copy-number yeast shuttle phagemid) into a yeast strain lacking a functional cytochrome c, followed by selection for cytochrome c function, reveals that 4-10% of the 400 possible amino acid substitutions are compatible with function. DNA sequence analysis of phagemids isolated from transformants exhibiting the functional phenotype elucidates the requirements for a stable helical interface. Basic residues are not tolerated at position 6 or 10. There is a broad volume constraint for amino acids at position 6. The amino acid substitutions observed to be compatible with function at Phe-10 show that the hydrophobic effect alone is sufficient to promote helical association. There are severe constraints that limit the combinations consistent with function, but the number of functionally consistent combinations observed exemplifies the plasticity of proteins.  相似文献   

9.
Affected individuals from two apparently distinct, mild osteogenesis imperfecta families were heterozygous for a G to T transition in the COL1A2 gene that resulted in cysteine for glycine substitutions at position 646 in the alpha 2(I) chain of type I collagen. A child with a moderately severe form of osteogenesis imperfecta was heterozygous for a G to T transition that resulted in a substitution of cysteine for glycine at position 259 in the COL1A2 gene. Type I collagen molecules containing an alpha 2(I) chain with cysteine at position 259 denaturated at a lower temperature than molecules containing an alpha 2(I) chain with cysteine at position 646. In contrast to cysteine for glycine substitutions in the alpha 1(I) chain, the severity of the osteogenesis imperfecta phenotype is not directly proportional to the distance of the mutation from the amino-terminal end of the triple helix. These findings could be explained if the type I collagen triple helix contains discontinuous domains that differ in their contributions to maintaining helix stability.  相似文献   

10.
The differentiated phenotype of rabbit articular chondrocytes can be characterized by the synthesis of high levels of cartilage specific proteoglycan and collagen (type II). Treatment of these cells in primary monolayer culture for periods of up to 18 days with 0.03 to 3.0 micrograms/ml retinoic acid (RA) resulted in suppression of colony formation, altered morphology, and decreased (eightfold) proteoglycan and collagen synthesis. With the exception of collagen synthesis, these changes were complete with all doses after 4 days of treatment. Collagen synthesis declined more slowly; it was dose dependent after 4 days and maximally inhibited by all doses by 9 days. Detailed analysis of the collagen phenotype was performed using SDS-PAGE of intact chains and 2-D CNBr peptide analysis. RA caused cessation of type II synthesis, and transient stimulation of type III and type I trimer collagen synthesis, without induction of type I collagen. Essentially identical results were obtained with retinol. The resultant collagen phenotype differed significantly from the type I-containing phenotype induced by subculture. Thus, suppression of this differentiated program did not elicit a common modulated phenotype. The results are discussed in the context of direct and indirect mechanisms of RA-dependent modulation of chondrocyte gene expression.  相似文献   

11.
Demenkov  P. S.  Aman  E. E.  Ivanisenko  V. A. 《Biophysics》2008,53(1):49-58
The functional (synthetic) activity of blood lymphocytes and bone marrow hematopoietic cells in ground squirrels was studied in different seasons and at different stages of the torpor-arousal cycle. The effect of γ-irradiation on animals in different physiological states was also studied. The synthetic activity of cells was estimated from the amount of active RNA per unit DNA in the cell (parameter α). The α values in lymphocytes were minimal in hibernating animals (January–March), reached a peak upon their complete awakening (April), slightly decreased in the summer activity period, and decreased further in the prehibernation autumn period (November). During winter arousals between torpor bouts, this parameter reached the same values as in summer. The dynamics of parameter α in bone marrow hematopoietic cells were generally similar: minimal values in November and higher between torpor bouts than in summer. The peak of synthetic activity of proliferating hematopoietic cells recorded upon awakening from hibernation in April was mainly due to the accumulation of cells in the G1 and G2 phases of the cell cycle, and its decrease in summer reflected prevalent transition from G2 to mitosis and then partly to G0. In the torpor-arousal-euthermia cycle, two stages of awakening were distinguished, differing considerably in most of the test parameters. The synthetic activity and the total number of blood and bone marrow cells in ground squirrels irradiated in the state of torpor did not differ significantly from those in nonirradiated torpid animals. The adverse effect of radiation in animals irradiated at the initial stage of awakening was lesser than in animals irradiated in the active state, whereas animals at the second stage of awakening proved more vulnerable to acute irradiation. The physiological state of ground squirrels exposed to ionizing radiation at different phases of the torpor-arousal-euthermia cycle plays a key role in the dynamics of qualitative and quantitative characteristics of blood system cells. The results of this study indicate that the hypometabolic state of ground squirrels during hibernation is a factor of protection from the impact of ionizing radiation on the whole body and on the immune system in particular.  相似文献   

12.
Prediction of the effect of amino acid substitutions on the thermodynamic stability of proteins is of great importance for studies into the molecular mechanisms underlying the abnormal function of mutant proteins, interpretation of genotyping results, and purposeful design of modified proteins with improved biomedical and biotechnological properties. A set of methods was developed for predicting the changes in free energy (ΔΔG) of mutant proteins containing single substitutions using the information only about protein primary structure or also about the spatial structure. A modified KRAB algorithm was used; its higher accuracy in predicting the changes in the thermodynamic stability of mutant proteins compared with the other known methods designed for solving this problem is demonstrated. Distribution of the positions in the sequence of Malayan pit viper venom protein (kistrin) where the substitutions decrease or increase kistrin stability is analyzed. The substitutions at most positions conserved in the disintegrin family decrease the stability of this protein, except for several positions whose conservation can be determined by functional significance.  相似文献   

13.
本研究建立了一种测定胶原蛋白的三股螺旋结构含量的方法。该方法通过使用柱前衍生高效液相色谱(HPLC)法表征经胰蛋白酶酶解后胶原蛋白羟脯氨酸(Hyp)质量浓度的变化,进而对胶原蛋白的三股螺旋结构进行定量。探讨了不同的酶解时间(0~48h)、酶与底物的比例(1∶100、1∶50和1∶20)和温度(20、25、30、37℃)对明胶降解率的影响。获得了酶解的最佳条件——当胰蛋白酶与底物的比例为1∶50时,25℃酶解3h。使用该方法对明胶胶原蛋白混合液检测,结果表明,该方法能灵敏(RSD<10%)的测定胶原蛋白三股螺旋结构的含量。该方法不仅可用于生物组织研究领域,也可用于胶原蛋白食品、保健品和组织工程产品质量的评价。  相似文献   

14.
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development.  相似文献   

15.
16.
To test structural and mechanistic proposals about bacteriorhodopsin, a series of analogues with single amino acid substitutions has been studied. Mutants in the proposed helix F of bacteriorhodopsin were chosen for investigation because of the probable interaction of this part of the protein with the retinal chromophore. Seven mutants of the bacteriorhodopsin gene were constructed by site-directed mutagenesis, and the gene products were expressed in Escherichia coli. The resulting mutant proteins were purified and assayed for their ability to interact with retinal in phospholipid/detergent micelles to form a bacteriorhodopsin-like chromophore. Four mutants, Ser-183----Ala, Tyr-185----Phe, Ser-193----Ala, and Glu-194----Gln, bound retinal to give pigments with absorption maxima approximately the same as the wild type. Three mutant opsins bound retinal to give chromophores that were blue-shifted relative to the wild type. Two Trp----Phe substitutions at positions 182 and 189 gave absorption maxima of 480 and 524 nm, respectively, and the mutant Pro-186----Leu gave a pigment with an absorption maximum of 470 nm. However, none of the amino acid substitutions eliminated the ability of the mutant bacteriorhodopsin to pump protons in response to illumination.  相似文献   

17.
18.

Background

TDP-43, a multi-functional DNA/ RNA-binding protein encoded by the TARDBP gene, has emerged as a major patho-signature factor of the ubiquitinated intracellular inclusions (UBIs) in the diseased cells of a range of neurodegenerative diseases. Mutations in at least 9 different genes including TARDBP have been identified in ALS with TDP-43 (+)-UBIs. Thus far, the pathogenic role(s) of the more than 30 ALS-associated mutations in the TARDBP gene has not been well defined.

Results

By transient DNA transfection studies, we show that exogenously expressed human TDP-43 (hTDP-43), either wild type (WT) or 2 different ALS mutant (MT) forms, could cause significantly higher apoptotic death rate of a mouse spinal motor neuron-like cell line (NSC34) than other types of cells, e.g. mouse neuronal Neuro2a and human fibroblast HEK293T cells. Furthermore, at the same plasmid DNA dose(s) used for transfection, the percentages of NSC34 cell death caused by the 2 exogenously expressed hTDP-43 mutants are all higher than that caused by the WT hTDP-43. Significantly, the above observations are correlated with higher steady-state levels of the mutant hTDP-43 proteins as well as their stabilities than the WT.

Conclusions

Based on these data and previous transgenic TDP-43 studies in animals or cell cultures, we suggest that one major common consequence of the different ALS-associated TDP-43 mutations is the stabilization of the hTDP-43 polypeptide. The resulting elevation of the steady state level of hTDP-43 in combination with the relatively low tolerance of the spinal motor neurons to the increased amount of hTDP-43 lead to the neurodegeneration and pathogenesis of ALS, and of diseases with TDP-43 proteinopathies in general.  相似文献   

19.
N J Bulleid  J A Dalley    J F Lees 《The EMBO journal》1997,16(22):6694-6701
The folding and assembly of procollagen occurs within the cell through a series of discrete steps leading to the formation of a stable trimer consisting of three distinct domains: the N-propeptide, the C-propeptide and the collagen triple helix flanked at either end by short telopeptides. We have established a semi-permeabilized cell system which allows us to study the initial stages in the folding and assembly of procollagen as they would occur in the intact cell. By studying the folding and assembly of the C-propeptide domain in isolation, and a procollagen molecule which lacks the C-propeptide, we have shown that this domain directs the initial association event and is required to allow triple helix formation. However, the essential function of this domain does not include triple helix nucleation or alignment, since this can occur when the C-propeptide is substituted with a single transmembrane domain. Also the telopeptide region is not involved in triple helix nucleation; however, a minimum of two hydroxyproline-containing Gly-X-Y triplets at the C-terminal end of the triple helix are required for nucleation to occur. Thus, the C-propeptide is required solely to ensure association of the monomeric chains; once these are brought together, the triple helix is able to nucleate and fold to form a correctly aligned triple helix.  相似文献   

20.
Recent reports have demonstrated that a series of probands with severe osteogenesis imperfecta had single base mutations in one of the two structural genes for type I procollagen that substituted amino acids with bulkier side chains for glycine residues and decreased the melting temperature of the triple helix. Here we demonstrate that the type I procollagen synthesized by cultured fibroblasts from a proband with a severe form of osteogenesis imperfecta consisted of normal molecules and molecules over-modified by post-translational reactions. The thermal stability of the intact type I collagen was normal as assayed by protease digestion under conditions in which a decrease in thermal stability was previously observed with eight other substitutions for glycine in the alpha 1(I) chain. In contrast, the thermal stability of the one-quarter length B fragment generated by digestion with vertebrate collagenase was decreased by 2-3 degrees C under the same conditions. Nucleotide sequencing of cDNAs and genomic DNA established that the proband had a substitution of A for G in one allele of the pro alpha 1(I) gene that converted the codon for alpha 1-glycine 844 to a codon for serine. The results also established that the alpha 1-serine 844 was the only mutation that could account for the decrease in thermal stability of the collagenase B fragment. There are at least two possible explanations for the failure of the alpha 1-serine 844 substitution to decrease the thermal stability of the collagen molecule whereas eight similar mutations decreased the melting temperature. One possibility is that the effects of glycine substitutions are position specific because not all glycine residues make equivalent contributions to cooperative blocks of the triple helix that unfold in the predenaturation range of temperatures. A second possible explanation is that substitutions of glycine by serine have much less effect on the stability of protein than the substitutions by arginine, cysteine, and aspartate previously studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号