首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of BAFF is believed to play an important role in systemic lupus erythematosus and elevated levels of serum BAFF have been found in lupus patients. Excess BAFF also leads to overproduction of anti-dsDNA antibodies and a lupus-like syndrome in mice. In the present study, we use mice transgenic for the R4A-Cμ (IgM) heavy chain of an anti-dsDNA antibody, to study the effects of BAFF overexpression on anti-dsDNA B-cell regulation. We observe that overexpression of BAFF promotes anti-dsDNA B-cell maturation and secretion of antibody and enriches for transgenic anti-dsDNA B cells in the marginal zone and follicular splenic compartments. In addition, our data suggests that BAFF rescues a subset of anti-dsDNA B cells from a regulatory checkpoint in the transitional stage of development.  相似文献   

2.
The objective of this study was to investigate the interaction between levels of BAFF (B-cell activation factor of the tumour necrosis factor [TNF] family) and APRIL (a proliferation-inducing ligand) and B-cell frequencies in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) treated with the B-cell-depleting agent rituximab. Ten patients with SLE were treated with rituximab in combination with cyclophosphamide and corticosteroids. They were followed longitudinally up to 6 months after B-cell repopulation. Nine patients with RA, resistant or intolerant to anti-TNF therapy, treated with rituximab plus methotrexate were investigated up to 6 months after treatment. The B-cell frequency was determined by flow cytometry, and serum levels of BAFF and APRIL were measured by enzyme-linked immunosorbent assays. BAFF levels rose significantly during B-cell depletion in both patient groups, and in patients with SLE the BAFF levels declined close to pre-treatment levels upon B-cell repopulation. Patients with SLE had normal levels of APRIL at baseline, and during depletion there was a significant decrease. In contrast, patients with RA had APRIL levels 10-fold higher than normal, which did not change during depletion. At baseline, correlations between levels of B cells and APRIL, and DAS28 (disease activity score using 28 joint counts) and BAFF were observed in patients with RA. In summary, increased BAFF levels were observed during absence of circulating B cells in our SLE and RA patient cohorts. In spite of the limited number of patients, our data suggest that BAFF and APRIL are differentially regulated in different autoimmune diseases and, in addition, differently affected by rituximab treatment.  相似文献   

3.
Systemic autoimmunity such as systemic lupus erythematosus (SLE) is associated with the loss of B-cell tolerance, B-cell dysregulation and autoantibody production. While some autoantibodies may contribute to the pathology seen with SLE, numerous studies have shown that dysregulation of T-cell function is another critical aspect driving disease. The positive results obtained in clinical trials using T-cell- or B-cell-specific treatments have suggested that cooperation between T and B cells probably underlies disease progression in many patients. A similar cooperative mechanism seemed to explain SLE developing in mice overexpressing the B-cell-activating factor from the tumor necrosis factor family (BAFF). However, surprisingly, T-cell-deficient BAFF transgenic (Tg) mice develop SLE similar to T-cell-sufficient BAFF Tg mice, and the disease was linked to innate activation of B cells and production of proinflammatory autoantibody isotypes. In conclusion, dysregulated innate activation of B cells alone can drive disease independently of T cells, and as such this aspect represents a new pathogenic mechanism in autoimmunity.  相似文献   

4.
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell–maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell–effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.  相似文献   

5.
B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor superfamily of cytokines and can induce B cell activation, differentiation, and antibody production via interaction with their receptors, including transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and B-cell activating factor receptor (BAFF-R). Herein, we assessed the plasma protein levels of BAFF and APRIL in patients with asthma to determine whether their expression is correlated with total IgE production and examined the surface expression of BAFF/APRIL receptors on B cells. Blood samples were collected from 47 patients with controlled asthma symptoms and 20 healthy normal controls, and plasma levels of APRIL, BAFF, and total IgE protein were quantified by corresponding ELISA assays. Furthermore, lymphocytes were isolated and B cells were analyzed for the presence of BAFF-R, BCMA, and TACI receptors using flow cytometry. Our results showed that IgE, BAFF, and APRIL plasma levels were markedly increased in patients with asthma compared with healthy controls. Moreover, expression of BAFF-R and BCMA, but not that of TACI, was significantly increased in patients with asthma compared with healthy controls. Overall, the findings suggest BAFF and APRIL as key mediators of asthma, and determination of their plasma levels may be useful in monitoring asthma symptoms and treatment response.  相似文献   

6.
7.
B-cell maturation protein (BCMA) is a member of the tumor necrosis factor (TNF) receptor family and is expressed in B lymphocytes. BCMA binds two TNF family members, BAFF and APRIL, that stimulate cellular proliferation. BAFF in particular has been shown to influence B-cell survival and activation, and transgenic mice overexpressing BAFF have a lupus-like autoimmune disorder. We have inactivated BCMA in the mouse germ line. BCMA(-/-) mice have normal B-cell development, and the life span of mutant B lymphocytes is comparable to that of wild-type B cells. The humoral immune responses of BCMA(-/-) mice to T-cell-independent antigens as well as high and low doses of T-cell-dependent antigens are also intact. In addition, mutant mice have normal splenic architecture, and germinal centers are formed during an ongoing immune response. These data suggest a functional redundancy of BCMA in B-cell physiology that is probably due to the presence of TACI, another TNF receptor family member that is expressed on B cells and that can also bind BAFF and APRIL.  相似文献   

8.
B cell activating factor belonging to the tumor necrosis factor family (BAFF) is a cytokine, indispensable for B cell survival, maturation, and activation. Over-expression of BAFF leads to lupus like disease in mice and the serum level of BAFF is elevated in human lupus. However, little is known about BAFF synthesis and its regulation. In this study, we examined the effects of a series of inflammatory cytokines on BAFF production in human peripheral blood mononuclear cells (PBMCs) in vitro. We found interleukin-2 (IL-2) strongly and dose-dependently stimulated BAFF synthesis in PBMCs, and an anti-IL-2 antibody neutralized the effect. Furthermore, T and NK cells produced BAFF with IL-2 stimulation. From these observations, IL-2 is one of the regulatory cytokines having a positive effect on BAFF synthesis in human peripheral T and NK cells. Persistent over-production of IL-2 might lead to up-regulation of BAFF synthesis in PBMCs in pathological conditions such as lupus.  相似文献   

9.
Recently, the B cell has emerged as a cornerstone of systemic lupus erythematosus (SLE) pathogenesis. This has been highlighted by studies of the cytokine B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF), a crucial factor regulating B-cell maturation, survival and function. Overexpression of BAFF in mice leads to the development of an SLE-like disease, independent of T cells but instead relying on innate immunity mechanisms. Moreover, BAFF has been shown to be elevated in the serum of patients suffering from autoimmune conditions, especially SLE, and may correlate with disease activity. These findings challenge the previous notion that T:B-cell collaboration is the sole driver of SLE. In recent years, controlled trials have for the first time tested targeted therapeutics for SLE. However, agents designed to target B cells failed to meet primary endpoints in clinical trials in SLE, suggesting that a more complex role for B cells in SLE awaited elucidation. By contrast, on 9 March 2011, the US Food and Drug Administration approved belimumab, a fully human anti-BAFF monoclonal antibody, as a new B-cell-specific treatment for SLE. This article will review over 10 years of research on the BAFF system, key findings that led to this recent positive clinical outcome and propose a model potentially explaining why this B-cell-specific therapy has yielded positive results in clinical trials. We will also review promising therapies presently in clinical trials targeting innate immunity, which are likely to revolutionize SLE management towards a personalized and targeted therapy approach.  相似文献   

10.
11.
12.

Introduction  

The tumour necrosis factor (TNF) family ligands BAFF (B-cell activating factor of TNF family) and APRIL (a proliferation-inducing ligand) are essential for B-cell survival and function. Elevated serum levels of BAFF and APRIL have been reported earlier in patients with systemic lupus erythematosus (SLE). Since autoantibody formation in the central nervous system (CNS) is a distinct feature of neuropsychiatric SLE (NPSLE), we have investigated whether NPSLE is associated with an enhanced intrathecal production of APRIL and BAFF.  相似文献   

13.
Despite exhibiting oncogenic events, patient's leukemia cells are responsive and dependent on signals from their malignant bone marrow (BM) microenvironment, which modulate their survival, cell cycle progression, trafficking and resistance to chemotherapy. Identification of the signaling pathways mediating this leukemia/microenvironment interplay is critical for the development of novel molecular targeted therapies.We observed that primary leukemia B-cell precursors aberrantly express receptors of the BAFF-system, BAFF-R, BCMA, and TACI. These receptors are functional as their ligation triggers activation of NF-κB, MAPK/JNK, and Akt signaling. Leukemia cells express surface BAFF and APRIL ligands, and soluble BAFF is significantly higher in leukemia patients in comparison to age-matched controls. Interestingly, leukemia cells also express surface APRIL, which seems to be encoded by APRIL-δ, a novel isoform that lacks the furin convertase domain. Importantly, we observed BM microenvironmental cells express the ligands BAFF and APRIL, including surface and secreted BAFF by BM endothelial cells. Functional studies showed that signals through BAFF-system receptors impact the survival and basal proliferation of leukemia B-cell precursors, and support the involvement of both homotypic and heterotypic mechanisms.This study shows an unforeseen role for the BAFF-system in the biology of precursor B-cell leukemia, and suggests that the target disruption of BAFF signals may constitute a valid strategy for the treatment of this cancer.  相似文献   

14.
B-cell activating factor of the TNF family (BAFF) induces B-cell survival, proliferation, immunoglobulin secretion and plays a role in enhancing immune responses. In the present study, a BAFF homolog has been identified in mefugu Takifugu obscurus, and its biological activities have been characterized. The mefugu BAFF (fBAFF) cDNA is 789 bp in length and translates into a 262-aa protein. The fBAFF genomic sequence consists of six exons and five introns, is approximately 1.8 kb in size. Amino acid sequence comparison indicated that fBAFF possessed the TNF signatures, a transmembrane domain, a putative furin protease cleavage site and three cysteine residues, which were the typical characteristics of TNF gene in mammals and birds. The predicted three-dimensional (3D) structure of the fsBAFF monomer analyzed by comparative protein modeling revealed that it was very similar to its human counterpart. Real-time quantitative PCR (qPCR) analysis revealed that fBAFF was predominantly expressed in mefugu lymphoid tissue spleen. The SUMO-fsBAFF and GFP/fsBAFF efficiently expressed in Escherichia coli Rosetta (DE3) were confirmed by SDS-PAGE and Western blotting analysis. After purification, the GFP/fsBAFF fusion protein obtained similar fluorescence spectrum to those of GFP. Laser scanning confocal microscopy analysis showed GFP/fsBAFF could bind to its receptors. In vitro, the MTT assays and flow cytometric analysis indicated that SUMO-fsBAFF could promote the proliferation of mefugu splenocytes or mouse splenic B cells together with/without anti-mouse IgM. These findings indicate that SUMO-fsBAFF plays an important role in proliferation of mefugu B cells and has functional cross-reactivity among mefugu and other mammalians. Therefore, BAFF may be a potential immunologic factor for enhancing immunological efficacy in fish.  相似文献   

15.
BAFF (B cell-activating factor belonging to the TNF family) is a cell survival and maturation factor for B cells, and overproduction of BAFF is associated with systemic autoimmune disease. BAFF binds to three receptors, BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B cell maturation Ag (BCMA). Using specific mAbs, BAFF-R was found to be the predominant BAFF receptor expressed on peripheral B cells, in both humans and mice, and antagonist mAbs to BAFF-R blocked BAFF-mediated costimulation of anti- micro responses. The other BAFF receptors showed a much more restricted expression pattern, suggestive of specialized roles. BCMA was expressed by germinal center B cells, while TACI was expressed predominantly by splenic transitional type 2 and marginal zone B cells, as well as activated B cells, but was notably absent from germinal center B cells. BAFF was also an effective costimulator for T cells, and this costimulation occurs entirely through BAFF-R. BAFF-R, but not TACI or BCMA, was expressed on activated/memory subsets of T cells, and T cells from BAFF-R mutant A/WySnJ mice failed to respond to BAFF costimulation. Thus, BAFF-R is important not only for splenic B cell maturation, but is the major mediator of BAFF-dependent costimulatory responses in peripheral B and T cells.  相似文献   

16.
BAFF is a B cell survival factor that binds to three receptors BAFF-R, TACI and BCMA. BAFF-R is the receptor triggering na?ve B cell survival and maturation while BCMA supports the survival of plasma cells in the bone marrow. Excessive BAFF production leads to autoimmunity, presumably as the consequence of inappropriate survival of self-reactive B cells. The function of TACI has been more elusive with TACI(-/-) mice revealing two sides of this receptor, a positive one driving T cell-independent immune responses and a negative one down-regulating B cell activation and expansion. Recent work has revealed that the regulation of TACI expression is intimately linked to the activation of innate receptors on B cells and that TACI signalling in response to multimeric BAFF and APRIL provides positive signals to plasmablasts. How TACI negatively regulates B cells remains elusive but may involve an indirect control of BAFF levels. The discovery of TACI mutations associated with common variable immunodeficiency (CVID) in humans not only reinforces its important role for humoral responses but also suggests a more complex role than first anticipated from knockout animals. TACI is emerging as an unusual TNF receptor-like molecule with a sophisticated mode of action.  相似文献   

17.
18.
B cell-activating factor belonging to the TNF family (BAFF) plays a critical role in B cell maturation, yet its precise role in B cell differentiation into Ig-secreting cells (ISCs) remains unclear. In this study, we find that upon isolation human naive and memory B (MB) cells have prebound BAFF on their surface, whereas germinal center (GC) B cells lack detectable levels of prebound BAFF. We attribute their lack of prebound BAFF to cell activation, because we demonstrate that stimulation of naive and MB cells results in the loss of prebound BAFF. Furthermore, the absence of prebound BAFF on GC B cells is not related to a lack of BAFF-binding receptors or an inability to bind exogenous BAFF. Instead, our data suggest that accessibility to soluble BAFF is limited within GCs, perhaps to prevent skewing of the conventional B cell differentiation program. In support of this concept, whereas BAFF significantly enhances ISC differentiation in response to T cell-dependent activation, we report for the first time the ability of BAFF to considerably attenuate ISC differentiation of MB cells in response to CpG stimulation, a form of T cell-independent activation. Our data suggest that BAFF may be providing regulatory signals during specific T cell-independent events, which protect the balance between MB cells and ISCs outside GCs. Taken together, these data define a complex role for BAFF in humoral immune responses and show for the first time that BAFF can also play an inhibitory role in B cell differentiation.  相似文献   

19.
20.
BAFF (BLyS) and APRIL are TNF-like cytokines that support survival and differentiation of B cells. Recent studies have discovered a role for BAFF in augmenting both innate and adaptive immune responses as well as in collaborating with other inflammatory cytokines to promote the activation and differentiation of effector immune cells. BAFF is an important pathogenic factor in lupus mouse models and BAFF inhibition successfully delays disease onset in these mice, although the responsiveness to BAFF inhibition varies among different strains. These results have led to the development of inhibitors targeting BAFF and APRIL in humans. An anti-BAFF antibody has shown significant but modest efficacy in two Phase III clinical trials for moderately active SLE and other inhibitors are being developed or at early stages of clinical testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号