首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enzymatic degradation of alginate by marine fungi   总被引:4,自引:0,他引:4  
Schaumann  K.  Weide  G. 《Hydrobiologia》1990,(1):589-596
A total of 72 pre-selected strains of 19 species of marine fungi were tested for their ability to decompose sodium alginate, calcium alginate or freshly prepared calcium alginate gel. Active alginate decomposition was evident in 18 strains (25% of total tested). These belong to only three different species: Asteromyces cruciatus, Corollospora intermedia, and Dendryphiella salina. In broth culture, decomposition of sodium alginate by the two deuteromycetes was followed by gravimetric, electrometric, viscometric, photometric and chromatographic methods in order to characterize the alginase enzyme system and its degradation products. The alginase enzyme complex consisted of at least two different enzyme components: the already known alginate lyase (eliminase) and a new endo-alginate hydrolase. In summary, a model is presented on the alginase-mediated structural and molecular decomposition of sodium alginate by marine fungi.  相似文献   

2.
Nitrosomonas europaea cells have been immobilized in calcium alginate and the resulting preparation was used as a biocatalyst for the oxidation of NH+4 to NO?2. Characterization of this immobilized biocatalyst was done according to the guidelines recommended by the Working Party on Immobilized Biocatalysts of the European Federation of Biotechnology. The most important indications obtained from the results are: (a) at low concentrations of substrate, either ammonium ions or oxygen, diffusion limitation will play a role; (b) inhibition by nitrite ions accumulating in the support is not rapidly controlling the efficiency of the immobilized cells; (c) accumulation of hydrogen ions is a rate-limiting factor, especially in unbuffered solutions; (d) the activity of immobilized N. europaea can increase as a result of growth in the support under conditions which would cause washout of free cells. This last result shows the potential of immobilized N. europaea for nitrification of wastewater. The development of a system applying a cheaper and more stable support is, however, a prerequisite for this application.  相似文献   

3.
Activated sludge has been fed with a medium containing ammonium ions as the sole nitrogen source. Biomass collected from this continuous culture was immobilized in calcium alginate. The influence of pH, temperature, and the size and cell load of the biocatalyst beads on the nitrifying activity was determined, as well as the storage and operational stability of the system. The results are compared with those obtained with Nitrosomonas europaea. It has been concluded that the mixed culture is more difficult to work with than the pure strain and that the reproducibility of the results is lower. The trends found, however, were largely similar, except for the operational stability which was poorer in the case of the immobilized mixed culture.  相似文献   

4.
Summary Gluconobacter oxydans cells were immobilized in calcium alginate and the preparation was used for the oxidation of glycerol to dihydroxyacetone. The characterization was done according to the guidelines given by the Working Party on Immobilized Biocatalysts of the European Federation of Biotechnology. The pH optimum of the preparation was found to be 5.0 and the temperature optimum was 40°C. However, the operational stability was better at 30°C. The glycerol concentration required to obtain half the maximal reaction rate was about 5 mM for both immobilized and free cells. At low concentrations of glycerol and high concentrations of dihydroxyacetone a slight inhibition was noted. No loss of activity of the immobilized preparation was observed after storage for 68 days at +4°C. Investigation of the operational stability revealed a half-life of 5 days. Studies of the influence of particle size and cell densities as well as that of oxygen concentration revealed that the oxygen supply was the rate limiting step.  相似文献   

5.
This work reports the first evidence that recombinant yeast phosphoglycerate kinase (PGK) is still significantly active when immobilized on glass and muscovite mica. Using previous work to improve the sensitivity of the existing setup, Tapping Mode atomic force microscopy (AFM) was used in a liquid environment to determine the surface enzyme coverage of derivatized mica and glass slides. When associated to spectrophotometric measurements, the AFM data allows assessing the catalytic constant of surface enzymes and comparing it to bulk values. The validity of the Michaelis-Menten model for surface reactions is discussed, supported by spectroscopic measurements of the surface consumption of 1,3-bis-phosphoglycerate (1,3-BPG). Only a few percent of the enzyme material maintains its initial bulk activity. This value could constitute a guideline for biosensors made with the method used here whenever a rapid assessment of the remaining surface activity is needed.  相似文献   

6.
Alginate is a biopolymer used in drug formulations and for surgical purposes. In the presence of divalent cations, it forms solid gels, and such gels are of interest for immobilization of cells and enzymes. In this work, we entrapped trypsin in an alginate gel together with a known substrate, N α-benzoyl-l-arginine-4-nitroanilide hydrochloride (l-BAPNA), and in the presence or absence of d-BAPNA, which is known to be a competitive inhibitor. Interactions between alginate and the substrate as well as the enzyme were characterized with transmission electron microscopy, rheology, and nuclear magnetic resonance spectroscopy. The biocatalysis was monitored by spectrophotometry at temperatures ranging from 10 to 42 °C. It was found that at 37 and 42 °C a strong acceleration of the reaction was obtained, whereas at 10 °C and at room temperature, the presence of d-BAPNA leads to a retardation of the reaction rate. The same effect was found when the reaction was performed in a non-cross-linked alginate solution. In alginate-free buffer solution, as well as in a solution of carboxymethylcellulose, a biopolymer that resembles alginate, the normal behavior was obtained; however, with d-BAPNA acting as an inhibitor at all temperatures. A more detailed investigation of the reaction kinetics showed that at higher temperature and in the presence of alginate, the curve of initial reaction rate versus l-BAPNA concentration had a sigmoidal shape, indicating an allosteric behavior. We believe that the anomalous behavior of trypsin in the presence of alginate is due to conformational changes caused by interactions between the positively charged trypsin and the strongly negatively charged alginate.  相似文献   

7.
Enzymatic synthesis of esters using an immobilized lipase   总被引:6,自引:0,他引:6  
Various esters were synthesized in nearly anhydrous hexane from alcohols and carboxylic acids using a lipase from Candida cylindracea. The enzyme was immobilized on a nylon support and protein loadings as high as 10 mg/g were obtained. The activity of the immobilized enzyme was maximum in a range of temperatures from 25 to 37 degrees C. Ethylpropionate was formed from ethanol and propionic acid at a rate of 0.017 mol/h g immobilized protein. Different esters were formed at comparable rates and equilibrium conversions could generally be approached in less than 10 h in a batch reaction system. The immobilized lipase catalyst was quite stable and retained about one third of the initial activity after repeated experiments during the course of 72 days. A stirred tank continuous flow reactor was used successfully for the continuous production of esters.  相似文献   

8.
Summary Whole cells of Arthrobacter simplex were immobilized in a living state in calcium alginate gel. The bacteria showed steroid-1-dehydrogenase activity and the production of prednisolone from cortisol was investigated. The 1-dehydrogenase activity of the immobilized cells could be increased about ten-fold by incubation in nutrient media (e.g., containing 0.5% peptone abd 0.2% glucose). The reason for this activation was examined and it was found that the immobilized cells were capable of multiplying when supplied with nutrients. Furthermore, provided that an inducer, cortisol, was present, the steroid-1-dehydrogenase activity increased in proportion to the increase in the number of cells and it was thus concluded that microbial growth was the cause of activation.Experiments on repeated, batch-wise pseudocrystallofermentation with immobilized A. simplex cells also showed that immobilized cells could be advantageously used for pseudocrystallofermentation of steroids.  相似文献   

9.
Enzymatic syntheses of cefaclor by immobilized penicillin acylase under kinetic control were carried out. According to the initial reaction rate ratio of synthesis to hydrolysis (Vs/Vh), penicillin acylase from Alcaligenes faecalis was chosen as the suitable catalyst for the synthesis of cefaclor. The reaction conditions, such as temperature, pH, and substrate concentration were investigated based on their Vs/Vh values. In the process of preparing cefaclor, in situ product removal (ISPR) and acyl donor feeding were used to achieve high yield. At the optimal conditions, the yield of cefaclor was 90%. In addition, the product were separated and purified, the total yield of cefaclor was 61%.  相似文献   

10.
Conclusions Immobilized vegetative cells ofC. acetobutylicum has a similar product formation pattern when incubated in a simple glucose-salts solution as ordinary growing cells. If vegetative cells of the organism are immobilized in the solvent production phase, solvents are continuously produced on extended incubation.By immobi1izing spores of the organism the disturbance of the cells metabolic activity during the immobilization procedure was avoided. After the outgrowth of viable cells within the gel, the washed gel preparation retained at a high production capacity in the non-growth stage and the results indicate that continuous production might be fully possible. The butanol productivity was also found to be higher with immobilized cells than in a normal batch process.  相似文献   

11.
The rate of celluose degradation, limited due to the inhibition by cellobiose, can be increased by the hydrolysis of cellobiose to glucose using immobilized beta-glucosidase. Production of beta-glucosidase in four yeasts was studied and a maximum activity of 1.22 IU/mg cells was obtained in cells of Pichia etchellsii when grown on 3% cellobiose as the sole carbon source. A study of the immobilization of beta-glucosidase containing cells of Pichia etchellsii on various solid supports was conducted and immobilization by entrapment in calcium alginate gel beads was found to be the most simple and efficient method. A retention of 96.5% of initial activity after ten sequential batch uses of the immobilized preparation was observed. The pH and temperature optima for free and immobilized cells were the same, i.e., 6.5 (0.05M Maleate buffer) and 50 degrees C, respectively. Even though the temperature optimum was found to be 50 degrees C, the enzyme exhibits a better thermal stability at 45 degrees C. Beads stored at 4 degrees C for six months retain 80% of their activity. Kinetic studies performed on free and immobilized cells shown that glucose is a noncompetitive product inhibitor.The immobilized preparation was found to be limited by pore diffusion but exhibited no film-diffusion resistance during packed bed column indicated by a low dispersion number of 0.1348. A model for reaction with pore diffusion for a noncompetitive type of inhibited system was developed and applied to the cellobiose hydrolysis system. The rate of reaction with diffusional limitations was determined by using the model and effectiveness factors were calculated for different particle sizes. An effectiveness factor of 0.49 was obtained for a particle diameter of 2.5 mm. The modified rate expression using the effectiveness factor represented batch and packed bed reactor operation satisfactorily. The productivity in the packed bed column was found to fall rapidly with increase in conversion rate indicating that the operating conditions of the column would have to be a compromise between high conversion rates and reasonable productivity. A half-life of over seven days was obtained at the operating temperature of 45 degrees C in continuous operation of the packed bed reactor. However, the half-life in the column was found to be greatly affected by temperature, increasing to over seventeen days at a temperature of 40 degrees C and decreasing to less than two days at 50 degrees C.  相似文献   

12.
Enzymatic polymerization was carried out on gold by immobilized genetically engineered endoglucanase II (EGII) from Trichoderma viride , and the polymerization behavior and the produced cellulose were analyzed in comparison with those by free enzymes. Mutant EGIIs were EGII(core2) and EGII(core2H), which consist of two sequential catalytic core domains with one His-tag (His6) on N-terminal and with totally two His-tags on both terminals, respectively. His-tagged EGIIs were immobilized via Ni chelators of nitrilotriacetic acid (NTA) introduced on gold surface. From SPR measurements, the affinity of EGII(core2H) to the surface was higher than that of EGII(core2), and the molecular occupation area of EGII(core2H) was larger than that of EGII(core2), indicating that EGII(core2H) was immobilized with utilizing two His-tags introduced on both terminals. The hydrolytic activity of the immobilized EGII(core2H) using cellohexaose as substrate was slightly lower than that of free EGII(core2H) when they were compared at the same amount in the hydrolytic system. Enzymatic polymerization catalyzed by both immobilized EGII(core2) and EGII(core2H) proceeded with producing highly crystalline cellulose in comparison with free enzyme. Immobilization of the endoglucanase is thus effective to obtain crystalline cellulose due to the high density of the catalytic domain on gold.  相似文献   

13.
14.
The immobilization of Pseudomonas delafieldii R-8 in calcium alginate beads has been studied in order to improve biodesulfurization activity in oil/water (O/W) biphasic systems. A gas jet extrusion technique was performed to produce immobilized beads. The specific desulfurization rate of 1.5 mm diameter beads was 1.4-fold higher than that of 4.0 mm. Some nonionic surfactants can significantly increase the activity of immobilized cells. The desulfurization rate with the addition of 0.5% Span 80 increased 1.8-fold compared with that of the untreated beads. The rate of biodesulfurization was markedly enhanced by decreasing the size of alginate beads and adding the surfactant Span 80, most likely resulting from the increasing mass transfer of substrate to gel matrix.  相似文献   

15.
Summary Thiobacillus ferrooxidans was immobilized by entrapment into calcium alginate matrix. The immobilized bacteria were used in packed-bed column reactors for the continuous oxidation of ferrous ion at pH 1.5. The presence of mineral salts resulted in a shorter lag period before a steady-state of about 95% iron oxidation was achieved. Parallel shake flask experiments were used to evaluate pH, mineral salts, and alginate toxicity as factors influencing biological iron oxidation. Manometric experiments indicated that the previous growth history of T. ferrooxidans was important in determining the rate of iron oxidation. Scanning electron microscopy and energy dispersive analysis of X-rays were used to characterize bacteria entrapped in calcium alginate and the enrichment of iron in the matrix.  相似文献   

16.
Urease immobilized on alginate was utilized to detect and quantify As3+ in aqueous solution. Urease from the seeds of pumpkin (vegetable waste) was purified to apparent homogeneity by heat treatment and gel filtration (Sephadex G-200). Further enzyme was entrapped in 3.5% alginate beads. Urea hydrolysis by enzyme revealed a clear dependence on the concentration and interaction time of As3+. The process variables effecting the quantitation of As3+ was investigated using central composite design with Minitab® 15 software. The predicted results were found in good agreement (R2 = 96.71%) with experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed that enzyme activity decreased with increase of As3+ concentration and interaction time. 3D plot and contour plot between As3+ concentration and interaction time was helpful to predict residual activity of enzyme for a particular As3+ at a particular time.  相似文献   

17.
Summary As a means of better exploiting the growth-dissociated nature of glucoamylase synthesis, a production process in which the growth phase was separated from the enzyme synthesis phase has been developed. Immobilized mycelia arising from a 6-day-old culture of conidia immobilized in calcium alginate beads could be subsequently used repeatedly to produce glucoamylase in a second step using a Dextran T-10 medium. Glucoamylase production was sustained over five sequential batches in a 19-day period and immobilized mycelia remained confined to the subsurface of the beads. Offprint requests to: C. Kuek  相似文献   

18.
beta-Galactosidase (EC 3.2.1.23) from fungus Curvularia inaequalis was modified by active brilliant orange KH and adsorbed on DEAE-Sephadex A-50. The lactose hydrolysis was studied in a continous flow on the column packed with the immobilized enzyme. The pH and temperatures optima for the substrate hydrolysis by the immobilized enzyme were shown to remain unchanged. A certain destabilizing effect of the matrix on the enzyme resistance to hear denaturation was observed. The activation parameters of denaturation of the native enzyme as well as those of the dye-modified and immobilized preparations were determined.  相似文献   

19.
The purpose of this study was to assess whether Sertoli's cells would improve functional performance of homologous pancreatic islets within microcapsules. Purified rat Sertoli's cells were co-enveloped with islets in microcapsules that had been fabricated with alginic acid and poly-L-ornithine. Confocal laser microscopy was used to determine any mitogenic effects of Sertoli's cells on islets beta-cells. Insulin secretion from islets, with or without Sertoli's cells, was examined, and grafts of Sertoli's cells with islets in microcapsules into diabetic mice were carried out. Co-incubation of Sertoli's cells with islets resulted in a significant increase in the islet beta-cell mitotic rate, which was coupled with significantly higher insulin release under glucose stimulation, as compared to controls. Grafts of co-microencapsulated Sertoli's cells with islets resulted in prolongation of the achieved normoglycemia in the animals receiving Sertoli's cells with islets as compared to controls that received islets only. Sertoli's cells do promote mitogenic activities upon in vitro co-incubation with islets, whose in vitro functional and in vivo post-transplant consequences were evident. Sertoli's cells could, therefore, be co-microencapsulated with islets for transplantation in diabetic recipients.  相似文献   

20.
A system consisting of isolated rat hepatocytes immobilized in agarose threads continuously perifused with oxygenated Krebs-Henseleit (KH) solution has been found to maintain cell viability with excellent metabolic activity for more than 6 h. The hepatocytes were monitored by phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy at 4.7 Tesla, by measurement of oxygen consumption and by the leakage of lactate dehydrogenase (LD) and alanine aminotransferase (ALT). The data obtained were comparable to those found for an isolated perfused whole liver in vitro. The effects of allyl alcohol (AA), ethanol, and 4-acetaminophenol (AP) were examined. A solution of 225 microM AA perifused for 90 min caused the disappearance of the beta-phosphate resonance of adenosine triphosphate (ATP) in the 31P-NMR spectra, a 7-fold increase in LD leakage and a 70% reduction in oxygen consumption. Ethanol (1.0 M) perifused for 90 min reduced the beta-ATP signal intensity ratio by 20%, the phosphomonoester (PME) signal by 50% and inorganic phosphate (Pi) by 33% (P less than 0.05). AP (10 mM) caused only mild liver-cell damage. The results demonstrate that perifused immobilized hepatocytes can be used as a liver model to assess the effects of a wide range of chemicals and other xenobiotics by NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号