首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated the involvement of mitogen-activated protein kinases (MAPKs) in the maturation of CD83(-) dendritic cells (DC) derived from human blood monocytes. Maturating agents such as LPS and TNF-alpha induced the phosphorylation of members of the three families of MAPK (extracellular signal-regulated kinase l/2, p46/54 c-Jun N-terminal kinase, and p38 MAPK). SB203580, an inhibitor of the p38 MAPK, but not the extracellular signal-regulated kinase l/2 pathway blocker PD98059, inhibited the up-regulation of CD1a, CD40, CD80, CD86, HLA-DR, and the DC maturation marker CD83 induced by LPS and TNF-alpha. In addition, SB203580 inhibited the enhancement of the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake induced by LPS and TNF-alpha. Likewise, SB203580 partially prevented the up-regulation of IL-1alpha, IL-1beta, IL-lRa, and TNF-alpha mRNA upon stimulation with LPS and TNF-alpha, as well as the release of bioactive TNF-alpha induced by LPS. DC maturation induced by the contact sensitizers 2,4-dinitrofluorobenzene and NiSO(4), as seen by the up-regulation of CD80, CD86, and CD83, was also coupled to the phosphorylation of p38 MAPK, and was inhibited by SB203580. The irritants SDS and benzalkonium chloride that do not induce DC maturation did not trigger p38 MAPK phosphorylation. Together, these data indicate that phosphorylation of p38 MAPK is critical for the maturation of immature DC. These results also suggest that p38 MAPK phosphorylation in DC may become useful for the identification of potential skin contact sensitizers.  相似文献   

3.
Tumor necrosis factor-alpha (TNF-alpha) is one of the key cytokines elicited by host macrophages upon challenge with pathogenic mycobacteria. Infection of human peripheral blood mononuclear cells or the murine macrophage cell line J774A-1 with Mycobacterium avium induced activation of the mitogen-activated protein kinases (MAPKs) ERK1/2, p38 and c-Jun N-terminal kinase. U0126, an MEK-specific inhibitor, abrogated M. avium-induced TNF-alpha secretion. Transfection of cells with dominant-negative MEK1 led to the suppression of TNF-alpha release in M. avium-challenged macrophages. M. avium activated p38 MAPK and use of the p38 MAPK inhibitor, SB203580, revealed that the p38 signaling pathway negatively regulates activation of ERK1/2 and release of TNF-alpha. Taken together, these results provide evidence that M. avium-induced TNF-alpha release from macrophages depends on an interplay between the ERK1/2 and the p38 MAPK signaling pathways.  相似文献   

4.
5.
An isoquinoline derivative, 5-methyl-7,8-dimethoxy-1-phenylpyrazolo[5,4-c]isoquinoline (compound 1), was identified as a novel inhibitor of LPS-induced TNF-alpha production by cell-based screening. Compound 1 suppressed LPS-induced TNF-alpha production in RAW264.7 cells and murine peritoneal macrophages in a dose-dependent manner similar to SB203580, known as a specific inhibitor of p38 MAPK. It also inhibited an LPS-induced increase in serum TNF-alpha in a mouse endotoxic shock model with an ED(50) of approximately 10 mg/kg. Compound 1 had little effect on the incorporation of [3H]-leucine into the cells, while it suppressed LPS-induced TNF-alpha mRNA levels in RAW264.7 cells. The results indicate that suppression of TNF-alpha production was not a result of nonspecific inhibition of de novo translation but was based on the decreased TNF-alpha mRNA levels. The in vitro kinase assay revealed that compound 1 did not strongly inhibit p38 MAPK activity, its potency being much lower than that of SB203580, suggesting that the TNF-alpha-suppressive action of compound 1 cannot be attributed to the inhibition of p38 MAPK. Furthermore, in contrast to SB203580, it significantly inhibited the growth of RAW264.7 and THP-1 cells in a cytostatic manner. Compound 1 is likely to have antiinflammatory and antiproliferative effects by acting on some molecule other than p38 MAPK that contributes to both LPS-induced TNF-alpha production and the cell growth of monocyte/macrophages.  相似文献   

6.
7.
SB203580 is a well-known inhibitor of p38 mitogen-activated protein kinase (MAPK). However, it can suppress cell proliferation in a p38 MAPK independent manner. The inhibitory mechanism remains unknown. Here, we showed that SB203580 induced autophagy in human hepatocellular carcinoma (HCC) cells. SB203580 increased GFP-LC3-positive cells with GFP-LC3 dots, induced accumulation of autophagosomes, and elevated the levels of microtubule-associated protein light chain 3 and Beclin 1. It stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and p53, but inhibited the phosphorylation of death-associated protein kinase (DAPK). Inhibition of AMPK, p53, or DAPK attenuated SB203580-induced autophagy. AMPK activation appeared to predate the DAPK signal. The activation of both AMPK and DAPK prompted the phosphorylation of p53 and enhanced Beclin 1 expression. Neither the downregulation of p38 MAPK by its siRNA or chemical inhibitor nor the upregulation of p38 MAPK by p38 MAPK DNA transfection affected B203580-induced autophagy. Collectively, the findings demonstrate a novel function of SB203580 to induce autophagy via activating AMPK and DAPK but independent of p38 MAPK. The induction of autophagy can thus account for the antiproliferative effect of SB203580 in HCC cells.  相似文献   

8.
It is well-known that p38 mitogen-activated protein kinase (p38MAPK) participates in cellular responses to mitogenic stimuli, environmental and genotoxic stresses, and apoptotic agents. Although there are several reports on p38MAPK in relation to cell growth and apoptosis, the exact mechanism of p38MAPK-mediated cell growth regulation remains obscure. Here, we examined possible roles of p38MAPK in the sodium arsenite-induced cell growth inhibition in NIH3T3 cells. Sodium arsenite induced transient cell growth delay with marked activation of p38MAPK. In addition, arsenite induced CDK inhibitor p21(CIP1/WAF1) and enhanced its binding to the CDK2, which resulted in inhibition of CDK2 activity. The levels of cyclin D1 expression and the CDK4 kinase activity were also significantly reduced. pRB was hypophosphorylated by sodium arsenite. SB203580, a specific inhibitor of p38MAPK, blocked arsenite-induced growth inhibition as well as the arsenite-induced p21(CIP1/WAF1) expression. Expression of dominant negative p38MAPK also blocked arsenite-induced p21(CIP1/WAF1) expression. Inhibited-CDK2 activity was also completely reversed by SB203580 or expression of dominant negative p38MAPK, while the decreased-cyclin D1 protein by the compound was not restored. These data demonstrate a possible link between the activation of p38MAPK and induction of p21(CIP1/WAF1), suggesting that the activation of p38MAPK is, at least in part, related to the cell growth inhibition by sodium arsenite.  相似文献   

9.
We investigated the effect of heat-killed Listeria monocytogenes (HKLM) on the expression of vascular endothelial growth factor (VEGF) in RAW264.7 macrophage-like cells. The expression of VEGF was induced in RAW264.7 cells treated with HKLM. Pretreatment of cells with cycloheximide, a protein synthesis inhibitor, inhibited the induction of VEGF mRNA by HKLM. Induction of VEGF by HKLM was partially inhibited by treatment of cells with SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor, or a neutralizing antibody against tumor necrosis factor-alpha (TNF-alpha). In addition, HKLM induced phosphorylation of p38 MAPK. These results suggest that p38 MAPK and TNF-alpha are involved in the VEGF expression induced by HKLM in RAW264.7 cells. We confirmed that increased VEGF expression is immunohistochemically detected in splenic macrophages of mice infected with L. monocytogenes (L. monocytogenes). VEGF is thought to be involved in inflammatory reactions induced by L. monocytogenes infection.  相似文献   

10.
11.
12.
In inflammatory processes, the p38 mitogen-activated protein kinase (MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor alpha (TNF-alpha) is a pivotal cytokine in rheumatoid arthritis and its production in macrophages is under control of the p38 MAPK route. Inhibition of the p38 MAPK route may inhibit production not only of TNF-alpha, but also of other inflammatory mediators produced by macrophages, and indirectly of inflammatory mediators by other cells induced by TNF-alpha stimulation. Here we investigate the effects of RWJ 67657, a p38 MAPK inhibitor, on mRNA expression and protein production of TNF-alpha and other inflammatory mediators, in monocyte-derived macrophages. A strong inhibition of TNF-alpha was seen at pharmacologically relevant concentrations of RWJ 67657, but also inhibition of mRNA expression of IL-1beta, IL-8, and cyclooxygenase-2 was shown. Furthermore, it was shown that monocyte-derived macrophages have a high constitutive production of matrix metalloproteinase 9, which is not affected by p38 MAPK inhibition. The results presented here may have important implications for the treatment of rheumatoid arthritis.  相似文献   

13.
This study examined the hypothesis that burn trauma promotes cardiac myocyte secretion of inflammatory cytokines such as tumor necrosis factor (TNF)-alpha and produces cardiac contractile dysfunction via the p38 mitogen-activated protein kinase (MAPK) pathway. Sprague-Dawley rats were divided into four groups: 1) sham burn rats given anesthesia alone, 2) sham burn rats given the p38 MAPK inhibitor SB203580 (6 mg/kg po, 15 min; 6- and 22-h postburn), 3) rats given third-degree burns over 40% total body surface area and treated with vehicle (1 ml of saline) plus lactated Ringer solution for resuscitation (4 ml x kg(-1). percent burn(-1)), and 4) burn rats given injury and fluid resuscitation plus SB203580. Rats from each group were killed at several times postburn to examine p38 MAPK activity (by Western blot analysis or in vitro kinase assay); myocardial function and myocyte secretion of TNF-alpha were examined at 24-h postburn. These studies showed significant activation of p38 MAPK at 1-, 2-, and 4-h postburn compared with time-matched shams. Burn trauma impaired cardiac mechanical performance and promoted myocyte secretion of TNF-alpha. SB203580 inhibited p38 MAPK activity, reduced myocyte secretion of TNF-alpha, and prevented burn-mediated cardiac deficits. These data suggest p38 MAPK activation is one aspect of the signaling cascade that culminates in postburn secretion of TNF-alpha and contributes to postburn cardiac dysfunction.  相似文献   

14.
15.
p38 MAPK is a Ser/Thr protein kinase activated by various inflammatory cytokines and a variety of stress stimuli. It is involved in many physiological processes, including the production of inflammatory cytokines. We have previously reported the design and synthesis of a series of pyridinylimidazole compounds that are selective inhibitors of p38 MAPK. These compounds, exemplified by SB 203580, are exceptionally effective in cell-based assays, including the inhibition of inflammatory cytokine production. SB 203580 is widely used as a tool to dissect the role of p38 MAPK in various physiological processes. It has previously been established that SB 203580 acts primarily to block the catalytic activity of p38 MAPK. However, it has been suggested that in cells, the compounds could also inhibit p38 MAPK activation by virtue of their ability to bind to the inactive enzyme. We undertook careful studies to definitively demonstrate that treatment with SB 203580 had no effect on Thr(180) and Tyr(182) phosphorylation, and hence activation of p38 in vivo. SB 203580, however, potently inhibited the activity of p38 MAPK as demonstrated by the inhibition of the activation of MAPKAP K2, a specific physiological substrate of p38 MAPK. This was observed regardless of stimuli or cell type. Identical results were obtained when the p38 MAPK cascade was partially reconstituted in vitro. Thus, our data clearly indicate that SB 203580 specifically inhibits the activity of p38 MAPK but not its activation by upstream MAPKK.  相似文献   

16.
The pro-inflammatory activity of Tumor necrosis factor-alpha (TNF-alpha) together with tissue hypoxia determine the clinical outcome in sepsis and septic shock. p38 MAPKinase is the primary intracellular signaling pathway that regulates lipopolysaccharide (LPS)-induced TNF-alpha biosynthesis, however, the effect of hypoxia on LPS mediated activation of p38 is not known. Here we report that SB203580, a specific p38 MAPK inhibitor, which completely abolished LPS-induced TNF-alpha expression by the mouse macrophage cell RAW264.7 in normoxic conditions, lost the inhibitory effect in hypoxic conditions. Hypoxia did not modulate expression of p38 MAPK, but increased that of p-MK2, a downstream target of p38 MAPK. In LPS induced endotoxemia mice model SB203580 had no inhibitory effect on the serum levels of TNF-alpha. Furthermore, hypoxia inducible factor-1alpha (HIF-1alpha) was detected in vivo after LPS administration but its expression was not affected by SB203580. Our data indicate that LPS induced p38 MAPK activation was enhanced by hypoxia and consequently increased TNF-alpha secretion. Furthermore, the induction of HIF-1alpha in mice with endotoxemia suggested a synergistic effect on p38 mediated TNF-alpha expression. These findings provide new insights on the pathophysiological effects of hypoxia in sepsis and septic shock.  相似文献   

17.
We reported previously that the early secreted antigenic target of 6 kDa (ESAT-6) from Mycobacterium tuberculosis directly inhibits human T cell IFN-γ production and proliferation in response to stimulation with anti-CD3 and anti-CD28. To determine the mechanism of this effect, we treated T cells with kinase inhibitors before stimulation with ESAT-6. Only the p38 MAPK inhibitor, SB203580, abrogated ESAT-6-mediated inhibition of IFN-γ production in a dose-dependent manner. SB203580 did not reverse ESAT-6-mediated inhibition of IL-17 and IL-10 production, suggesting a specific effect of SB203580 on IFN-γ production. SB203580 did not act through inhibition of AKT (PKB) as an AKT inhibitor did not affect ESAT-6 inhibition of T cell IFN-γ production and proliferation. ESAT-6 did not reduce IFN-γ production by expanding FoxP3(+) T regulatory cells. Incubation of T cells with ESAT-6 induced phosphorylation and increased functional p38 MAPK activity, but not activation of ERK or JNK. Incubation of peripheral blood mononuclear cells with ESAT-6 induced activation of p38 MAPK, and inhibition of p38 MAPK with SB203580 reversed ESAT-6 inhibition of M. tuberculosis-stimulated IFN-γ production by peripheral blood mononuclear cells from subjects with latent tuberculosis infection. Silencing of p38α MAPK with siRNA rendered T cells resistant to ESAT-6 inhibition of IFN-γ production. Taken together, our results demonstrate that ESAT-6 inhibits T cell IFN-γ production in a p38 MAPK-dependent manner.  相似文献   

18.
19.
Polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) cause untoward effects including carcinogenesis. Here we investigated the effect of MC on apoptosis. MC induced apoptosis, preceded by serine 15 phosphorylation and accumulation of p53. MC failed to cause apoptosis in p53-deficient MG63 cells, whereas ectopic expression of p53 in MG63 cells restored the response to MC. Therefore, MC-induced apoptosis was dependent on p53. MC also activated p38 mitogen-activated protein kinase (MAPK) at 16-24 h. Accumulation of p53 and p53 phosphorylated at serine 15 was not changed by SB203580, a specific inhibitor of p38 MAPK or overexpression of a dominant negative mutant of p38 MAPK at 8 h after MC treatment, whereas the accumulation was suppressed at 24 h. These results suggest that MC induces accumulation and phosphorylation of p53 via a p38 MAPK-independent (early) and p38 MAPK-dependent (late) pathway. SB203580 repressed MC-induced apoptosis. MC induced p38 MAPK activation in p53 expressing cells but not in p53-deficient cells, indicating that the p38 MAPK activation was dependent on early p53 activation. The current study shows that both p53 and p38 MAPK activation are required for MC-induced apoptosis and provides a novel model of a functional regulation between p53 and p38 MAPK in chemical stress-induced apoptosis.  相似文献   

20.
Accentuation of ANP secretion to endothelin-1 in hypertrophied atria   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号