共查询到13条相似文献,搜索用时 0 毫秒
1.
Characterization of H2O2-induced acute apoptosis in cultured neural stem/progenitor cells 总被引:2,自引:0,他引:2
In the present study, we characterized hydrogen peroxide (H2O2)-induced cell apoptosis and related cell signaling pathways in cultured embryonic neural stem/progenitor cells (NS/PCs). Our data indicated that H2O2 induced acute cell apoptosis in NS/PC in concentration- and time-dependent manners and selectively, it transiently increased PI3K-Akt and Mek-Erk1/2 in a dose-dependent manner. Inhibition of PI3K-Akt with wortmannin, a PI3-K inhibitor, was found to significantly increase H2O2-induced acute apoptosis and dramatically decrease basal pGSK3β levels. The level of pGSK3β remained unchanged with H2O2 exposure. We conclude that the transient activation of PI3K-Akt signaling delays the H2O2-induced acute apoptosis in cultured NS/PCs in part through maintaining the basal pGSK3β level and activating other downstream effectors. 相似文献
2.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. 相似文献
3.
Funneling auxin action: specificity in signal transduction 总被引:11,自引:0,他引:11
4.
Background
Modulated immune signal (CD14–TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis.Methods
Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14–TLR, TNF and EGFR was done in SimBiology (MATLAB 7.11.1). Cytoscape and adjacency matrix were used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score.Results
Network has five crosstalk points: NIK, IκB–NFκB and MKK (4/7, 3/6, 1/2) which show high flux and sensitivity. PI3K in EGFR pathway shows high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction.Conclusions
EGFR can be linked to CD14–TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell–cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway.General significance
The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell–cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis. 相似文献5.
Inhibition of the lipid phosphatase SH2-domain containing inositol phosphatase 2 (SHIP2) in L6-C10 muscle cells, in 3T3-L1 adipocytes and in the liver of db/db mice has been shown to ameliorate insulin signal transduction and established SHIP2 as a negative regulator of insulin action. Here we show that SHIP2 inhibition in INS1E insulinoma cells increased Akt, glycogen synthase kinase 3 and extracellular signal-regulated kinases 1 and 2 phosphorylation. SHIP2 inhibition did not prevent palmitate-induced apoptosis, but increased cell proliferation. Our data raise the interesting possibility that SHIP2 inhibition exerts proliferative effects in beta-cells and further support the attractiveness of a specific inhibition of SHIP2 for the treatment of type 2 diabetes. 相似文献
6.
Glycosphingolipids (GSLs) can interact with each other by homotypic or heterotypic trans carbohydrate–carbohydrate interactions across apposed membranes, resulting in cell–cell adhesion. This interaction can also provide an extracellular signal which is transmitted to the cytosolic side, thus forming a glycosynapse between two cells. The two major GSLs of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I3-sulfate (SGC), are an example of a pair of GSLs which can participate in these trans carbohydrate–carbohydrate interactions and trigger transmembrane signaling. These GSLs could interact across apposed oligodendrocyte membranes at high cell density or when a membranous process of a cell contacts itself as it wraps around the axon. GalC and SGC also face each other in the apposed extracellular surfaces of the multilayered myelin sheath. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication. 相似文献
7.
8.
Kulbatski I Mothe AJ Parr AM Kim H Kang CE Bozkurt G Tator CH 《Progress in histochemistry and cytochemistry》2008,43(3):123-176
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS. 相似文献
9.
Mie Ø Pedersen Agnete Larsen Milena Penkowa 《Progress in histochemistry and cytochemistry》2009,44(1):1-27
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality.This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients. 相似文献
10.
Marinos Kosmopoulos Dimitrios Drekolias Phaedon D. Zavras Christina Piperi Athanasios G. Papavassiliou 《生物化学与生物物理学报:疾病的分子基础》2019,1865(3):611-619
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome. 相似文献
11.
A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength. 相似文献
12.
13.