首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Arginine is required for expression of the activated macrophage cytotoxic effector mechanism that causes inhibition of mitochondrial respiration, aconitase activity, and DNA synthesis in tumor target cells. This effector mechanism is active in the presence of L-arginine even when the cocultivation medium lacks all other amino acids and serum. Cytotoxic activated macrophage-induced inhibition of mitochondrial respiration in target cells is proportional to the concentration of L-arginine in the medium. L-Arginine must be present during the cocultivation period. Pretreatment of cytotoxic activated macrophages with L-arginine or posttreatment of the target cells after cocultivation is not effective. D-Arginine does not substitute for L-arginine and at high concentrations is a competitive inhibitor of the L-arginine-dependent effector mechanism. Other analogues that could not replace L-arginine include agmatine, argininic acid, arginine hydroxamate, and tosyl-L-arginine methyl ester. L-homoarginine, however, can effectively substitute for L-arginine. NG-monomethyl-L-arginine is a potent competitive inhibitor of this effector mechanism. High concentrations of lipopolysaccharide do not reverse inhibition of the L-arginine-dependent effector mechanism by NG-monomethyl-L-arginine. However, inhibition of the effector mechanism by NG-monomethyl-L-arginine can be overridden by increasing the concentration of L-arginine in the culture medium. We compared NGNG-dimethyl-L-arginine and NGN1G-dimethyl-L-arginine with NG-monomethyl-L-arginine as inhibitors of the L-arginine-dependent effector mechanism. The results show that the inhibitory effect of these guanidino methylated derivatives of L-arginine is highly determined by structure. Guanidine is a weak competitive inhibitor of the L-arginine-dependent effector mechanism. The requirement for L-arginine does not appear to be for protein synthesis, creatine biosynthesis, polyamine biosynthesis, or ADP ribosylation reactions. Bacterial lipopolysaccharide is effective as a second signal only when the cocultivation medium contains L-arginine, and this strict L-arginine dependency is not overridden by increasing the concentration of lipopolysaccharide. Bovine liver arginase, by competing for L-arginine in the cocultivation medium, inhibits the L-arginine-dependent activated macrophage cytotoxic effector mechanism.  相似文献   

2.
Recent studies show the importance of a single amino acid, L-arginine, as a necessary substrate for activated macrophage-mediated cytotoxic activity for tumor target cells and microbiostatic function for Cryptococcus neoformans. The present studies were carried out to determine the role of the L-arginine-dependent macrophage effector function on the microbiostatic effects of activated macrophages on the obligate intracellular protozoan, Toxoplasma gondii. A guanidino methylated derivative of L-arginine, NGmonomethyl-L-arginine (NGMMA), a competitive inhibitor of the L-arginine-dependent effector pathway, virtually abolished the normally potent microbiostatic effect of macrophages for Toxoplasma gondii after activation of the macrophages in vitro by IFN-gamma and LPS or in vivo by i.p. injection of killed Corynebacterium parvum. Addition of supplemental L-arginine to the culture medium overcame the capacity of NGMMA to block activated macrophage-mediated microbiostasis of Toxoplasma. The ability of NGMMA to inhibit the microbiostatic capacity of activated macrophages for Toxoplasma gondii correlated with almost total inhibition of synthesis of nitrite, nitrate, and L-citrulline from L-arginine. Therefore, as is the case for tumor target cells and C. neoformans, the synthesis of inorganic nitrogen oxides from a terminal guanidino nitrogen atom of L-arginine appears to be essential for murine cytotoxic activated macrophage mediated microbiostatic capacity for T. gondii.  相似文献   

3.
The killing of Entamoeba histolytica trophozoites by phagocytes involves oxidative and nonoxidative mediators. In this study, we determine whether L-arginine-derived nitric oxide (NO) is involved in the killing of E. histolytica trophozoites by activated murine macrophages in vitro. Elicited peritoneal and bone marrow-derived macrophages activated with IFN-gamma alone or with IFN-gamma and LPS killed 62 to 73% of amebae, concomitant with increased levels of nitrate (NO2). Depletion of L-arginine by addition of arginase to culture medium abrogated macrophage amebicidal activity. NG-monomethyl L-arginine, an L-arginine analog, competitively inhibited NO2 release and amebicidal activity in a dose-dependent fashion, without affecting H2O2 production; however, the addition of excess L-arginine competitively restored macrophage amebicidal effects. In culture, sodium nitrite and sodium nitroprusside were cytotoxic to E. histolytica and this was reversed by the addition of myoglobin. Exogenously added FeSO4 prevented macrophage cytotoxicity. Addition of superoxide dismutase, a scavenger of O2-, partially inhibited amebicidal activity, without influencing NO2 production. Untreated and LPS-exposed macrophages produced high levels of H2O2 independent from NO2 production and amebicidal effects. However, the addition of catalase, a scavenger of H2O2, inhibited both amebicidal activity and NO2 production by activated macrophages. Our results demonstrate that NO is the major cytotoxic molecule released by activated macrophages for the in vitro cytotoxicity of E. histolytica and that O2- and H2O2 may be cofactors for the NO effector molecule.  相似文献   

4.
Macrophages infected with amastigotes of Leishmania major and treated with IFN-gamma in vitro develop potent antimicrobial activities that eliminate the intracellular parasite. This antileishmanial activity was suppressed in a dose dependent fashion by NG-monomethyl-L-arginine (NGMMLA), a competitive inhibitor of nitrite, nitrate, nitric oxide and L-citrulline synthesis from L-arginine. Excess L-arginine added to infected macrophage cultures reversed the inhibitory effects of NGMMLA. Addition of arginase to culture media inhibited intracellular killing by IFN-gamma-treated cells. Similar effects were seen with macrophages obtained from BCG-infected C3H/HeN mice. Increased levels of nitrite, an oxidative product of the L-arginine-dependent effector mechanism, was measured in cultures of infected IFN gamma-treated macrophages as well as infected BCG-activated macrophages. Nitrite production correlated with development of antileishmanial activity. Nitrite production and microbicidal activity both decreased when in vivo or in vitro-activated macrophages were cultured in the presence of either arginase or NGMMLA. Nitric oxide synthesized from a terminal guanidino nitrogen atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe-dependent enzymatic pathways vital to the survival of amastigotes within macrophages.  相似文献   

5.
Previous studies show that cytotoxic activated macrophages cause a reproducible pattern of metabolic inhibition in viable tumor target cells. This includes inhibition of DNA synthesis, two oxidoreductases of the mitochondrial electron transport chain (NADH: ubiquinone oxidoreductase and succinate: ubiquinone oxidoreductase), and the citric acid cycle enzyme aconitase. This pattern of metabolic inhibition is induced by a cytotoxic activated macrophage associated biochemical pathway with L-arginine deimination activity that synthesizes L-citrulline from L-arginine and oxygenated nitrogen derivatives from the imino nitrogen removed from the guanido group of L-arginine. Here we report that macrophages activated in vivo by infection with bacillus Calmette-Guérin or in vitro by murine rIFN-gamma or murine IFN-alpha/beta (in the presence of the second signal LPS in all cases) develop inhibition of aconitase and the same two oxidoreductases of the mitochondrial electron transport chain as was documented earlier in target cells of cytotoxic activated macrophages. In addition, this pattern of metabolic inhibition which develops in cytotoxic activated macrophages is caused by the L-arginine-dependent effector mechanism. Inhibition of mitochondrial respiration by effectors of the L-arginine-dependent cytotoxicity system results in a compensatory increase in activity of the glycolytic pathway. We speculate that the pattern of metabolic inhibition induced in cytotoxic activated macrophages by the L-arginine-dependent effector system causes changes in the macrophage intracellular environment that increases resistance to certain facultative and obligate intracellular pathogens.  相似文献   

6.
Activated macrophages have been demonstrated to metabolize the amino acid L-arginine by the oxidative pathway to produce nitric oxide, citrulline, and NO2-/NO3-. Nitric oxide has been shown to be cytostatic for tumor targets and to inhibit the mitochondrial respiration and other functions of the macrophages that produce it. Addition of NG monomethyl-L-arginine (NMA), a competitive inhibitor of oxidative L-arginine metabolism, to rat splenocyte (SPL) MLC results in allospecific lymphocyte proliferation and CTL induction. In the absence of NMA, neither proliferation nor CTL induction is observed. Citrulline and NO2-/NO3- levels in the supernatants of rat SPL MLC are decreased in the presence of NMA compared with cultures without NMA. NMA also augments the proliferation and CTL induction in mouse SPL MLC. Detectable levels of cytokines able to induce T cell proliferation were present in supernatants of rat SPL MLC without NMA on days 1 to 5 of culture. Supernatants of cultures with NMA contained detectable levels of cytokines on days 1 to 3 and undetectable levels by days 4 and 5 of culture, concomitant with the observed lymphocyte proliferation and presumed depletion of cytokines. Thus, inhibition of rat SPL proliferation to alloantigen seems not to be caused by the lack of production of cytokines able to induce T cell proliferation. The inhibition of proliferation and CTL induction in rat SPL cultures may be caused by a direct effect of the cytostatic products of oxidative L-arginine metabolism on lymphocyte proliferation, or by an indirect deleterious effect on the mitochondrial respiration and viability of macrophages that oxidatively metabolize L-arginine. Alternatively, diversion of L-arginine to the oxidative pathway may affect production of polyamines that are necessary for cell growth and proliferation.  相似文献   

7.
P P Kamoun  E Schneider  M Dy 《FEBS letters》1988,226(2):285-286
Murine bone marrow cells can produce citrulline directly from L-arginine without intermediate ornithine. An L-arginine-dependent biochemical pathway synthesizing L-citrulline and nitrate, coupled to an effector mechanism has also been recently demonstrated in murine cytotoxic activated macrophages. We show herein that L-citrulline synthesis in murine bone marrow cells can be induced by the generation of superoxide. It can take place in an arginine-free medium, suggesting the implication of a superoxide-dependent peptidyl arginine deiminase.  相似文献   

8.
Effect of L-arginine on the retention of macrophage tumoricidal activity   总被引:8,自引:0,他引:8  
It has been reported that the tumoricidal activity of macrophages (M phi) depends on L-arginine and that L-arginine metabolites such as reactive nitrogen intermediates alter M phi physical capacities. The aim of this report is to investigate the dose-related effect of L-arginine on the expression and retention of M phi tumoricidal activity. Cytotoxicity of M phi activated by IFN-gamma plus LPS was detected in the presence of about 0.1 mM or more of L-arginine. This paralleled the NO2- production in the presence, but not in the absence, of L-arginine. On the other hand, activated M phi were destined to die and lost their tumoricidal activity with time in the presence of 0.3 mM or more L-arginine. They retained, however, considerable activity in the absence or presence of 0.15 mM L-arginine. This retention of M phi cytotoxicity was longer when M phi were preactivated by 100 ng/ml than 10 ng/ml of LPS in combination with IFN-gamma. Addition of indomethacin, an inhibitor of prostaglandin production, did not prevent the decay of M phi cytotoxicity but rather facilitated it even in the absence of L-arginine. Regardless of indomethacin, consecutive stimulation with LPS or LPS plus IFN-gamma during culture was effective in maintaining the tumoricidal activity at a high level. In addition, we found that M phi which had lost tumoricidal activity during culture in L-arginine deficient medium could be reactivated by LPS to attack tumor target cells.  相似文献   

9.
Saccharomyces cerevisiae mannan inhibits the pinocytosis of horseradish peroxidase (HRP) by resident, thioglycollate-,proteose peptone-, and Corynebacterium parvum-elicited macrophages from 30 to 70% when 1 mg/ml HRP is used, and 65 to 87% when 250 micrograms/ml HRP is used. In contrast, HRP uptake by J774 cells, a macrophage cell line reported to have little mannose receptor activity, is inhibited only about 25% by mannan. HRP uptake by resident and thioglycollate-elicited (thio) macrophages is also inhibited 34 and 66% by addition of EGTA to the medium and 55 and 79% by trypsin treatment of the macrophages, respectively. The inhibitory effect of EGTA can be reversed by 1 mM excess Ca2+. High extracellular concentrations of Ca2+, in the range of 10-20 mM, however, inhibit pinocytosis in resident macrophages by about 50%. Sucrose uptake by resident macrophages is not appreciably affected by mannan. These results support the hypothesis that HRP uptake is mediated by the macrophage mannose/N-acetylglucosamine receptor. PMA stimulates fluid-phase pinocytosis of HRP by thio macrophages but does not affect receptor-mediated uptake of HRP, while the combination of adenosine, homocysteine, and erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) selectively inhibits bulk-phase uptake by thio macrophages.  相似文献   

10.
Recent evidence has implicated galectins and their carbohydrate ligands as master regulators of the inflammatory response. Galectin-1, a member of this family, has shown specific anti-inflammatory and immunoregulatory effects. To gain insight into the potential mechanisms involved in these effects, we investigated the effects of galectin-1 in L-arginine metabolism of peritoneal rat macrophages. Pretreatment of macrophages with galectin-1 resulted in a dose- and time-dependent inhibition of lipopolysaccharide-induced nitric oxide (NO) production, accompanied by a decrease in inducible nitric oxide synthase (iNOS) expression (the classic pathway of L-arginine). On the other hand, galectin-1 favored the balance toward activation of L-arginase, the alternative metabolic pathway of L-arginine. Inhibition of NO production was not the result of increased macrophage apoptosis because addition of this beta-galactoside-binding protein to macrophages under the same experimental conditions did not affect the apoptotic threshold of these cells. To understand how endogenous galectin-1 is regulated in macrophages under inflammatory stress, we finally explored the ultrastructural distribution, expression, and secretion of galectin-1 in resident, inflammatory, and activated macrophages. This study provides an alternative cellular mechanism based on the modulation of L-arginine metabolism to understand the molecular basis of the anti-inflammatory properties displayed by this carbohydrate-binding protein.  相似文献   

11.
We have investigated the role of L-arginine in macrophage tumor cytotoxicity in coculture. L929, EMT-6, MCA-26, and P815 targets were all susceptible to cytolysis by activated macrophages when cocultured in medium containing L-arginine. When cocultured in arginine-free medium, these targets displayed comparable or even higher levels of lysis. L1210 targets were lytically resistant under either condition. However, 59Fe release from this target did reflect strong dependence on the presence of arginine. The structural analogue, NG-monomethyl-L-arginine, was an effective inhibitor of iron-release from L1210 targets cocultured with activated macrophages, whereas it had minimal inhibitory effects on release of 51Cr from cocultured L929 cells. These results suggest that the L-arginine requiring cytotoxic pathway of activated macrophage is independent of major effector mechanisms involved in tumor cell lysis.  相似文献   

12.
We examined the cytolytic mechanisms of activated macrophages by using proteose peptone- or thioglycollate broth-induced mouse peritoneal macrophages or mouse macrophage hybridomas as effector cells, L.P3 cells, a clone of L929 cells, and P815 cells as target cells, and IFN-gamma and LPS as activators. It was determined that TNF is the main cytolytic molecule against L.P3 cells from the following results: 1) activated macrophages can produce TNF; 2) TNF shows cytotoxic activity against L.P3 cells; 3) the addition of anti-TNF antibody inhibited most of the cytolytic activity of activated macrophages against L.P3 cells. On the other hand, it was concluded that the main cytolytic mechanism against P815 cells is the production of NO2-/NO3- from L-arginine, from the following results: 1) activated macrophages can produce NO2-; 2) NaNO2 shows high cytotoxic activity against P815 cells; 3) the depletion of L-arginine from the medium inhibited most of the cytolytic activity of activated macrophages against P815 cells and NO2- production by activated macrophages. In this study, however, cytostatic effects of L-arginine-dependent effector mechanism were not studied. Thus, these results show that activated macrophages can express at least two cytolytic mechanisms independently, namely, the one that appears to be mediated by the L-arginine-dependent effector mechanism and the second that appears to be mediated directly by TNF. Furthermore, it was demonstrated that TNF and L-arginine-dependent NO2- production act synergistically as killing mechanisms of activated macrophages. These mechanisms can explain the cytolytic activity of activated macrophages against a variety of target cells.  相似文献   

13.
L-Arginine iminohydrolase (arginine deiminase, ADI) from Tetrahymena thermophila was purified approx. 75-fold by means of gel permeation chromatography. The Km of the purified enzyme for L-arginine was 412 +/- 25 microM and L-ornithine inhibited the reaction competitively with a Ki of 985 +/- 105 microM. D-Ornithine was a weak inhibitor with a Ki of greater than 10mM. The polyamines putrescine and spermidine inhibited ADI incompetitively with a Kii of 2.8mM for putrescine and 4.3mM for spermidine. Since the concentrations required for inhibition were within the range of the normal intracellular polyamine concentrations in Tetrahymena (maximally 14mM putrescine and 4mM spermidine), it is suggested that the polyamine effects on ADI are of regulatory nature. Thus, polyamine biosynthesis in Tetrahymena thermophila is regulated not only on the level of ornithine decarboxylase activity, but also on an earlier step, the supply of ODC with substrates.  相似文献   

14.
Glutathione metabolism in resting and phagocytizing peritoneal macrophages   总被引:7,自引:0,他引:7  
The steady state GSH content of cultured mouse resident peritoneal macrophages was 34 +/- 5 pmol/microgram of cell protein. Intracellular GSH content decreased concomitantly with zymosan ingestion. The half-life of GSH decreased from 1.9 h in resting cells to 0.58 h during phagocytosis as determined by inhibition of GSH synthesis with buthionine sulfoximine. The decrease in GSH half-life was directly related to the extent of particle uptake. In cytochalasin D-treated cells, attachment of zymosan to the macrophage plasma membrane in the absence of particle interiorization was sufficient to stimulate GSH turnover. Efflux was the major route of GSH loss in [35S]cystine-labeled macrophages, and was enhanced 3-fold by a zymosan challenge. GSH was lost intact since resident macrophages lack gamma-glutamyl transpeptidase (less than 1 pmol of L-gamma-glutamyl-p-nitroanilide/microgram of protein . h). Macrophages obtained from mice challenged in vivo with Corynebacterium parvum maintained higher intracellular GSH levels (50 +/- 5 pmol/microgram of cell protein) than did resident cells. The half-life of GSH in buthionine sulfoximine-treated C. parvum-elicited macrophages was 3.8 +/- 0.2 h while resting and 1.3 +/- 0.2 h during phagocytosis. C. parvum-elicited macrophages, in contrast to resident cells, contained sufficient levels of gamma-glutamyl transpeptidase activity to hydrolyze 55 pmol of L-gamma-glutamyl-p-nitroanilide/microgram of cell protein . h. These studies indicate that phagocytosis and cellular activation have profound effects on GSH metabolism in macrophages.  相似文献   

15.
The aim of this study was to investigate to what extent the generation of leukotrienes (LTs) and lipoxins (LXs) was affected by the expression of definite levels of macrophage activation. We used a system of murine peritoneal macrophages at different states of activation consisting in resident macrophages and FCS-, thioglycollate- or Corynebacterium parvum-elicited macrophages. The profile of lipoxygenase metabolites in resident macrophages was characterized by the presence of high levels of 12-HETE, followed by 15-HETE, 5-HETE, LTB(4) and 6-trans-LTB(4), 6-trans-12-epi-LTB(4). A comparable pattern was also found in FCS-elicited macrophages which appeared not to be responsive to the challenge with interferon gamma plus LPS, as measured by the generation of NO and tumor necrosis factor alpha. Resident as well as FCS-elicited macrophages also generated appreciable quantities of LXs (A(4) and B(4)). Thioglycollate-elicited macrophages, which expressed a state of 'responsive' macrophages, showed a block of the LT and LX synthesis. This block was also present in C. parvum-elicited macrophages which expressed a fully 'activated' phenotype, reflected by their capacity of releasing NO and tumor necrosis factor alpha even though they were not challenged. These results provide the first evidence that the level of 'responsive' as well as 'activated' macrophages was associated with of a simultaneous block of LTB(4) and LXs.  相似文献   

16.
Summary Preliminary experiments have suggested that guinea pig L2C B-cell leukemia cells were able to evade macrophage-mediated lysis. To determine whether the L2C cells were resistant to macrophage cytotoxic activity or whether factors associated with the L2C leukemia contributed to a generalized inhibition of macrophage cytotoxic activity, pulmonary macrophages from strain 2 guinea pigs with L2C leukemia were tested for their ability to lyse the susceptible K562 cell line after activation by lipopolysaccharide (LPS) or lymphokines. In addition, the potential presence of soluble inhibitors of macrophage tumoricidal activity in serum-free culture supernatants and in serum from strain 2 guinea pigs terminally ill with the leukemia was tested by determining the effects of leukemic guinea pig serum (LGPS) or L2C-conditioned medium (CM) on the tumoricidal activity of normal pulmonary macrophages. Macrophages from guinea pigs terminally ill with L2C leukemia were demonstrated to be depressed in their cytotoxic activity against the K562 cell after stimulation by either LPS or lymphokines when compared to normal macrophages. The lymphokine-stimulated cytotoxic activity of normal macrophages was inhibited in the presence of LGPS or CM. Oxidative burst activity of normal macrophages, as measured by zymosan-stimulated production of superoxide and hydrogen peroxide, was also inhibited under these conditions. The data presented here suggests that soluble factors associated with L2C leukemia cells can suppress oxidative burst activity of macrophages in vitro and that this effect may contribute to the ability of the leukemia cells to evade macrophage-mediated cytotoxicity.  相似文献   

17.
Mononuclear phagocytes are known to play a key role in various phlogistic reactions by synthesizing and releasing products that may potentiate or inhibit inflammatory processes. The expression of these products appears to be dependent on the source of the macrophage population as well as the stimulus employed. We have studied superoxide anion (O-2) production as well as the generation of PGE2, PGF2 alpha, and TXB2 from resident, oil-elicited and thioglycollate-induced peritoneal macrophages in mice in the presence and absence of chemotactic peptides. Production of O-2, occurred only in elicited macrophages stimulated with high concentrations of FMLP or C5a; resident cells stimulated with either of the chemotactic peptides were completely unresponsive. Although resident peritoneal macrophages incubated with chemotactic peptides did not generate O-2, these cells did secrete significant levels of PGE2, PGF2 alpha, and TXB2 in response to C5a. FMLP had no stimulatory effect. Elicited macrophages generated increased levels of PGE2 and PGF2 alpha when incubated with C5a. However, production of TXB2 was not stimulated. FMLP was inactive in stimulating PGE2, PGF2 alpha, and TXB2 in all types of macrophages studied. These studies indicate a heterogeneity in the production of inflammatory mediators from various macrophage populations in response to chemotactic factors.  相似文献   

18.
The expression of macrophage antitumor activity and the production of prostaglandins (PG) by operationally defined macrophage populations differed under varying culture conditions. Culture conditions that caused increased PGE2 production by activated macrophages resulted in an inhibition of their tumoricidal activity. In contrast, production of high levels of PGE2 by resident and elicited macrophages was associated with an increase in antitumor activity. The activation of resident or elicited cells by lipopolysaccharide (LPS) could be blocked by indomethacin. Treatment of these macrophages with PGE2 alone also resulted in their activation and subsequent tumor cell destruction. Activation of resident and elicited macrophages by LPS appears to be mediated by PGE2.  相似文献   

19.
To understand murine host responses to extracellular protozoa, the capacity of peritoneal macrophages to exhibit cytotoxicity for [3H]thymidine-labeled Giardia lamblia trophozoites was investigated. Resident peritoneal macrophages from C3H/HeN mice expressed spontaneous cytotoxicity for G. lamblia in a manner that was dependent on both time and effector cell number; this cytotoxic activity was increased with cells elicited by an intraperitoneal injection of thio-glycollate. In contrast, spontaneous cytotoxicity for G. lamblia by resident and thioglycollate-elicited peritoneal macrophages from C3H/HeJ mice was markedly reduced. In the presence of anti-G. lamblia serum (ADCC), however, peritoneal macrophages from both C3H/HeN and C3H/HeJ mice exhibited striking augmentation of their cytotoxic activity for G. lamblia to equivalent levels. We conclude that macrophages from C3H/HeJ mice express defective spontaneous cytotoxicity but normal ADCC for the extracellular protozoan parasite, G. lamblia. The dissociation between the expression of these two effector cell functions suggests that macrophage spontaneous cytotoxicity and ADCC for extracellular protozoa are mediated by separate macrophage functions.  相似文献   

20.
Tumor necrosis factor (TNF) is a monokine which is involved in macrophage-mediated cytotoxicity (MMC). We have previously reported that peroxidases can activate thioglycollate-induced macrophages to the tumoricidal state in vitro. The present study was undertaken in an attempt to correlate peroxidase-induced MMC with production of TNF. Horseradish peroxidase (HRP) was used as the principal model for these studies. Resident and thioglycollate-induced macrophages exposed to peroxidases were examined for both MMC against 3T12 cells and production of TNF. Thioglycollate-induced macrophages exposed to HRP, bovine lactoperoxidase, or human myeloperoxidase demonstrated enhanced secretion of TNF. When exposed to HRP, both resident and thioglycollate-induced macrophages secreted significant amounts of TNF and acquired the ability to lyse 3T12 cells. However, resident macrophages were considerably less efficient in both their cytotoxic activity and TNF secretion. Macrophage-mediated cytotoxicity was eliminated by the addition of specific antisera to TNF. In addition, replacement of culture supernatants within 24 hr after exposure of the macrophages to HRP increased tumor cell killing in the absence of additional detectable TNF production, suggesting that other factors may be involved in peroxidase-induced MMC. These results indicate that TNF is intimately associated with peroxidase-induced MMC and suggest a possible role for peroxidases as immunomodulators via augmentation of macrophage capacities and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号