首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Despite an important role of subterranean rodents as ecosystem engineers, their belowground mobility is poorly documented. It is supposed that their underground burrow systems, once established, are relatively stable because of high-energy costs of digging. We chose the silvery mole-rat, Heliophobius argenteocinereus (Bathyergidae, Rodentia) from mesic Afrotropics as a representative of solitary subterranean rodents to investigate how, and how fast these rodents process their established burrow systems. We combined radio-tracking of individual animals with subsequent mapping of their burrow systems, and we developed a new method for assessing the rate of burrowing. Mole-rats continuously rebuilt their burrow systems; they excavated approx. 0.7 m of new tunnels per day and backfilled on average 64% of all tunnels. On average, every 32 d they established a new nest. They often completely backfilled newly excavated peripheral burrows, while other parts of their burrow systems were more permanent. Their home-ranges were dynamic and continuously shifted in space. Burrow system processing continued even in the advanced dry season, when soil is difficult to work.  相似文献   

2.
While females are traditionally thought to invest more time and energy into parental care than males, males often invest more resources into searching and displaying for mates, obtaining mates and in male–male conflict. Solitary subterranean mammals perform these activities in a particularly challenging niche, necessitating energetically expensive burrowing to both search for mates and forage for food. This restriction presumably affects males more than females as the former are thought to dig longer tunnels that cover greater distances to search for females. We excavated burrow systems of male and female Cape dune mole rats Bathyergus suillus the, largest truly subterranean mammal, to investigate whether male burrows differ from those of females in ways that reflect mate searching by males. We consider burrow architecture (length, internal dimensions, fractal dimension of tunnel systems, number of nesting chambers and mole mounds on the surface) in relation to mating strategy. Males excavated significantly longer burrow systems with higher fractal dimensions and larger burrow areas than females. Male burrow systems were also significantly farther from one another than females were from other females' burrow systems. However, no sex differences were evident in tunnel cross-sectional area, mass of soil excavated per mound, number of mounds produced per unit burrow length or mass of soil excavated per burrow system. Hence, while males may use their habitat differently from females, they do not appear to differ in the dimensions of the tunnels they create. Thus, exploration and use of the habitat differs between the sexes, which may be a consequence of sex differences in mating behaviour and greater demands for food.  相似文献   

3.
Burrow structure and foraging costs in the fossorial rodent,Thomomys bottae   总被引:2,自引:0,他引:2  
D. Vleck 《Oecologia》1981,49(3):391-396
Summary A model for calculating the energy cost of burrowing by fossorial rodents is presented and used to examine the energetics of foraging by burrowing. The pocket gopher Thomomys bottae (Rodentia: Geomyidae) digs burrows for access to food. Feeding tunnels of Thomomys are broken into segments by laterals to the surface that are used to dispose of excavated soil. Energy cost of burrowing depends on both soil type and on burrow structure, defined by the length of burrow segments, angle of ascent of laterals, depth of feeding tunnels, and burrow diameter. In a desert scrub habitat, Thomomys adjust burrow segment length to minimize cost of burrowing. Observed segment lengths (mean=1.33 m) closely approximate the minimum-cost segment length of 1.22 m. Minimizing energy expended per meter of tunnel constructed maximizes efficiency of foraging by burrowing in the desert scrub. Burrow diameter and cost of burrowing increase with body size, while benefits do not, so foraging by burrowing becomes less enconomical as body size increases. Maximum possible body size of fossorial mammals depends on habitat productivity and energy cost of burrowing in local soils.  相似文献   

4.
Burrow systems play an important role in the life of rodents in arid environments. The objectives of this study were to examine the hypothesis that group living is beneficial to the semifossorial rodent, and determine whether Microcavia australis (Geoffroy and d’Orbigny, 1833) burrows communally and/or shares burrow systems. I related the structure of burrow systems to the number of cavies inhabiting them, in two habitats with different soil hardness and different plant cover (El Leoncito and Ñacuñán). El Leoncito has a harsh climate, with lower plant density and softer soil than Ñacñuán. A total of 18 burrow systems were characterized at Ñacuñán, and 12 at El Leoncito. Social groups at El Leoncito have a higher number of individuals than at Ñacuñán, but the structure of burrow systems in softer soil is narrower (small area size), with fewer holes, less slope and depth of galleries, and with no relationship between the number of holes and burrow area. Therefore, considering the development of the burrow system as an indicator of the cost of burrowing, I conclude that communal burrowing to reduce the energetic cost of burrowing per capita is not the primary cause of cavy sociality. M. australis were not active diggers, because digging behaviour was rarely recorded at either site. Burrow systems of cavies persisted over the years of study, occupied by the same cavies and new offspring, and digging new burrow systems and tunnels was a relatively rare event at both sites. Under the burrow-sharing hypothesis, sociality could prevail in M. australis that regularly dig to build and maintain a burrow system which they use for a long time.  相似文献   

5.
We studied the architecture of the burrow system of the African ice rat Otomys sloggetti robertsi, a non–hibernating, diurnal murid rodent endemic to the sub–alpine and alpine regions of the southern African Drakensberg and Maluti mountains. In our study site we found ice rat burrows in two substrates (organic and mineral soils). The structure of the burrow system was similar in both soil types, comprising several interlinking tunnels, numerous burrow entrances and 1–2 nest chambers. However, the surface area of the burrow systems in organic soils was larger, the tunnels were deeper, and some of the systems contained two levels, all of which was contrary to our assumption that digging would be more difficult in the compact organic soils. Ice rats occur in colonies of up to 17 individuals, and the collected efforts of several individuals are required for constructing complex burrow systems. The burrow structure is similar to those of two arid–adapted relatives, Parotomys brantsii and Parotomys littledalei, suggesting that the burrow architecture among these three taxa may reflect the similar functions of burrows in extreme environments. For ice rats, burrows could provide a suitable microhabitat in which to escape adverse environmental conditions, particularly during winter. Moreover, ice rat burrows contained far fewer nest chambers than those of both Parotomys species, indicating that members in a colony share nest chambers, thereby facilitating huddling. Finally, the extensive interlinking tunnels may provide underground routes to aboveground feeding sites, thereby reducing exposure to adverse conditions.  相似文献   

6.
高原鼢鼠推土造丘行为对高寒草地生态系统的生产和生态功能有重要影响,研究高原鼢鼠土丘空间分布格局及其与环境因子的关系,可以揭示高原鼢鼠栖息地利用和选择规律,为合理控制鼠害及保护草地生物多样性提供科学依据。于2014年8月在祁连山东段选取面积为140m×100m的高原鼢鼠栖息地,消除景观尺度取样带来的气候、地形和土壤的异质性,利用地统计学方法,分析高原鼢鼠土丘的空间分布格局、并揭示其与环境因子中土壤容重、土壤水分、植物地上、地下生物量、根系营养物质含量(可溶性糖、粗蛋白、粗脂肪)以及各功能群丰富度(禾本科、莎草科、杂类草)的空间关系。半方差函数及普通克里格插值表明,高原鼢鼠土丘存在中等程度的空间变异且呈现聚集分布,各环境因子均存在不同程度的空间异质性。交方差函数分析表明,高原鼢鼠分布虽与各环境因子在多种尺度下表现出复杂的空间关联性(正的或负的),但mantel检验发现土壤容重、莎草科丰富度与高原鼢鼠土丘分布呈现显著的负空间关联性,杂类草丰富度和根系粗脂肪含量与高原鼢鼠土丘分布存在显著正空间关联性。综上所述,高原鼢鼠主要栖息利用在土壤疏松、莎草科丰富度较低、杂类草较多和根系粗脂肪含量较高的地方。  相似文献   

7.
Salt marshes are among the most productive systems of the world, with plant primary production limited by soil oxygen deficiency and nutrient availability. Nevertheless, root adaptations to anoxia and nutrient acquisition are different and often incompatible. The SW Atlantic salt marshes are characterized by high densities of the deep (up to 1 m) burrowing crab Neohelice granulata (Dana, 1851) that may change soil physical and chemical characteristics by burrow construction. In this work, we experimentally evaluated the hypothesis that crab burrowing can enhance soil oxygenation, causing changes in Spartina densiflora Brongniart below ground tissues from structures adapted to anoxia to systems adapted for nutrient acquisition. This response, in turn, would enhance plant productivity. Results from field observations show that oxygen availability is higher in zones with high burrow densities. As burrow densities increased, the plant root distribution changed from shallow (associated to low oxygen availability) to deeper and vertically homogeneous, with a positive correlation between burrow density and plant aboveground biomass. Experimental exclusion of crabs shows that they induce changes of root strategies from anoxia toleration to nutrient efficient acquisition, with increasing plant productivity. The invasive success that this plant shows in other parts of the world is likely to be due to their ability to tolerate harsh environmental conditions. Our results suggest that the morphological plasticity of S. densiflora is also important in their native zone given the characteristics of their specific habitat.  相似文献   

8.
Abstract

Seabirds can influence entire island ecosystems through the effects of their burrowing and of their underground deposition of vegetation on biotic and abiotic island processes. This study quantifies the extent of these effects at three sooty shearwater breeding islands in southern New Zealand, with the aim of assessing the importance of this species as an ecosystem engineer. Mean burrow volumes ranged between 158.2 and 528.1 m3 ha–1. Between 18 and 34% of the ground surface was undermined by burrow space on the three islands. This extent of burrowing is comparable to that of fossorial mammals, widely recognised as ecosystem engineers. Mean vegetation inputs (dry weight), transported underground by birds and incorporated into nests, varied between 33 and 96 g m‐2 The implications of the biopedturbation caused by sooty shearwater burrowing to the extent measured in this study may be profound for some ecosystem processes, and certainly warrants further research.  相似文献   

9.
方青慧  杨晶  张彩军  张倩  苏军虎 《生态学报》2022,42(4):1619-1628
为明晰放牧对高原鼢鼠(Eospalax baileyi)造丘活动的影响,于2019年5月、8月和10月分别对禁牧(No grazing,NG)、生长季休牧(Rest grazing in growing season,RG)、传统放牧(Traditional grazing,TG)和连续放牧(Continuous grazing,CG)4种放牧管理模式样地下高原鼢鼠的新鼠丘(2个月内形成)半径、高度、表面积和体积等进行测定,并分析其表面积、体积与土壤和植被生物量间的关系。结果发现:放牧管理模式显著影响了高原鼢鼠鼠丘形态特征,且具有季节性差异。NG下鼠丘的半径、表面积和体积最大,而CG下鼠丘的体积和表面积显著变小(P<0.05),在8月和10月,鼠丘半径在CG样地显著小于其他3种放牧模式样地(P<0.05);8月TG下鼠丘高度最高,而5月和10月NG下鼠丘高度最高,鼠丘高度在CG样地显著小于NG样地(P<0.05)。冗余分析2个排序轴几乎全部解释了土壤因子及地下生物量与鼠丘特征之间的关系,但各放牧管理模式下影响因子不同,NG样地的土壤容重(P<0.05)、土壤紧实度(P<0.01)和莎草科植物的地上生物量(P<0.01),RG样地的地下生物量(P<0.01)、土壤紧实度(P<0.01)和豆科植物的地上生物量(P<0.01),TG样地的禾本科和豆科植物的地上生物量(P<0.01),CG样地的土壤水分、地下生生物量、土壤紧实度(P<0.05)和莎草科植物的地上生物量(P<0.01)均显著影响了鼠丘的形态特征。可见,放牧会影响高原鼢鼠的鼠丘形态特征,进而对草地的演替产生不同的影响。  相似文献   

10.
Successful overwintering of small mammals in temperate and cold climates requires behavioural and physiological adaptations. There are several strategies to survive food shortages and the cold. Most species of small mammals use multiple methods simultaneously but nest building and burrowing are the most widespread among them. A well-constructed, dry nest insulates animals from harsh ambient conditions. Mound-building mice build large banks in the autumn and establish a burrow system with nest chambers beneath them. These overwintering structures are built from soil and a considerable amount of plant material. Recent studies presume that the stored vegetable matter does not, or not exclusively, serve as food and indicate that the mounds might have insulating role. To investigate the function of their plant fill, we built artificial mounds with varying plant content, similar to those built by mound-building mice. We measured temperature change at three levels, at the surface, under the mound and at the nest depth, and investigated their water retaining properties. We showed that the plant fill plays a major role in their thermal insulation and waterproofing properties. Mounds reduced temperature variation of the soil and may protect the nest from absorbing precipitation during the winter.  相似文献   

11.
The silvery mole-rat Heliophobius argenteocinereus (Bathyergidae) is a solitary subterranean rodent, widely distributed throughout eastern and south-eastern Africa in a variety of habitats. Here, we provide the first data on its biology in a typical natural habitat, the Brachystegia woodland. The population density of mole-rats was low (4.6 ha−1) and its distribution across the study site was random. Contrary to subadults and pups, the sex ratio of adult mole-rats was highly female biased (1:5.75), probably due to the higher mortality of males as a consequence of their mating strategy. Reproduction of Heliophobius is seasonal and pups are born at the beginning of the hot dry season. Burrow systems of the silvery mole-rat were long, highly branched, reticulated and comparable in fractal dimension to systems of social bathyergids. Variability in burrow architecture was related to the body mass of the burrow occupants, soil hardness and food supply when tested together. Burrow systems with a higher fractal dimension had inhabitants that had a greater body mass. Longer systems were less branched. Nests were typically deeper than foraging tunnels and experienced negligible temperature fluctuations. The microenvironmental characteristics of the subterranean niche including temperature, humidity and soil characteristics are provided for purpose of comparison with other mole-rat species.  相似文献   

12.
Complete burrow systems of the mole rat Spalax ehrenbergi (Rodentia; Spalacidae), from two sites on Mount Carmel in Israel, with different soil types (terra-rossa and rendzina), were excavated and described here for the first time.
A comparison was made of burrow structure patterns in the two soils and of the sexes, with special attention to the features of the feeding tunnels.
The pattern in the rendzina revealed longer burrows with a longer main tunnel and fewer branches per metre of the main tunnel, while the pattern in the terra-rossa revealed shorter burrows with a shorter main tunnel and a relatively higher number of branches. These differences can primarily be related to the different levels of food availability, which is higher in the terra-rossa. It is suggested that each of the patterns reflects the mole rat's ability to optimize foraging efficiency in accordance with its given food availability.
The average total length of the males' burrows was much greater than those of the females' burrows in the rendzina soil. It appears that food requirements determine different burrow features of the sexes rather than reproduction requirements.
Other tunnel features (e.g. structural complexity, depth and width, segment length and spatial arrangement) and the factors which may affect them, as well as burrow structure of young mole rats and evidence of the underground dispersion of young mole rats, were presented and discussed.
Many similarities were found in a comparison of S. ehrenbergi burrow features with those of other solitary subterranean rodents.  相似文献   

13.
Ecological functions of bioturbation in ecosystems have received increasing attention over the recent decades, and crab burrowing has been considered as one of the major bioturbations affecting the physical and chemical processes in salt marshes. This study assessed the integrated effects of crab excavating and burrow mimic trapping on sediment turnover and vertical C and N distributions in a Chinese salt marsh in the Yangtze River estuary. Crab burrowing increased soil water content and the turnover of carbon and nitrogen and decreased bulk soil density. Vertical movement of materials, nutrient cycling and reuse driven by crab burrowing might be obstructed by vegetation (Phragmites australis and Spartina alterniflora communities). The amount of soil excavated by crab burrowing was higher than that deposited into burrow mimics. In Phragmites marshes, Spartina marshes and unvegetated mudflats, net transport of soil to the marsh surface was 171.73, 109.54, and 374.95 g m−2 d−1, respectively; and the corresponding estimated soil turnover time was 2.89, 4.07 and 1.83 years, respectively. Crab burrowing in salt marshes can mix surface and deeper soil over a period of years, accelerating litter decomposition and promoting the efficient reuse of nutrients by plants. Therefore, bioturbation affects soil physical processes and functioning of ecosystems, and needs to be addressed in ecosystem management.  相似文献   

14.
Subterranean rodents forage underground, which is energetically costly. Therefore, they can be expected to economize burrowing activity in response to food supply and soil characteristics. We analyzed the activity of radio‐tracked blind mole rats, Spalax galili, on a locality sharply subdivided into harder but relatively food‐rich, basaltic soil and softer, relatively food‐poor rendzina. It was recently proposed that the mole rats in this locality are undergoing sympatric ecological speciation. We predicted that mole rats from basaltic soil would be less active than those from rendzina as a result of the reduced need for burrowing to reach food. By contrast to our predictions, mole rats from basaltic soil were more frequently located outside the nest and observed pushing soil above ground. We suggest that this is a result of territorial behaviour due to high population density. All mole rats exhibited a unimodal daily activity pattern likely related to temperature. Large males had large but gradually decreasing home‐ranges, likely indicating the end of the mating season. We conclude that the ecological differences between the habitats cause behavioural differences in the mole rats, which indicates different selection pressures. The genetic divergence previously found between the populations might have arisen via density‐dependent selection.  相似文献   

15.
Burrow architecture enhances important animal functions such as food storage, predator avoidance, and thermoregulation. Occupants may be able to maximize fitness by remodeling burrows in response to seasonal changes in climate and predation risk. My objective was to examine how banner‐tailed kangaroo rats (Dipodomys spectabilis) modify the number of burrow entrances in response to seasonal conditions. For 3 yr, I monitored fluctuations in number of burrow entrances in kangaroo rat mounds. Individual kangaroo rats continually remodeled mounds in response to seasonal conditions. Compared to summer, mounds in winter had approximately 50% fewer entrances and plugged entrances were common. Monthly differences in number of entrances were closely linked with seasonal changes in soil temperature and precipitation. Number of entrances decreased as soil temperature and precipitation declined. Changes in burrow entrances likely reflect seasonal differences in the relative importance of burrow functions. Fewer burrow entrances during winter would create a warmer microclimate by reducing convective heat loss in mounds, resulting in thermoregulatory savings for occupants. During the summer, thermoregulatory costs of kangaroo rats are low, but risk of seed cache spoilage and predation from snakes increases. Adding burrow entrances after large summer rainfall events would increase the evaporation rate within mounds, reducing spoilage of seed caches. More burrow entrances would also reduce predation risk in the summer by providing additional escape routes.  相似文献   

16.
Summary Where a fluid flows across a surface, such as wind over the earth, the velocity gradient created provides a potential source of work. This gradient might be employed by one burrowing animal to induce air-flow in its long, narrow burrow. The burrow of the black-tailed prairie-dog constitutes a respiratory dead-space of extraordinary magnitude in which diffusion appears inadequate for gas exchange. But the burrow is arranged in a manner appropriate for wind-induced ventilation, typically with two openings at opposite ends and with mounds surrounding these openings of two forms (Fig. 3), with one form on each end. When a breeze crosses the mounds, air enters the burrow through the lower mound and leaves through the higher. The same unidirectional flow is evident with scale models of real mounds on a model burrow in a wind tunnel; flow inside the burrow is nearly a linear function of flow across the mounds (Fig. 4). Wind-induced ventilation in the model burrow could also be induced with model mounds differing in shape but not height. Mounds with sharp rims were more effective exits for air than mounds with rounded tops; in nature such shape differences complement the differences in height. This study was supported by the Duke University Research Council, NIH Biomedical Sciences Support Grant K-01-GM-1222, and NIH Research Grant HL-02228. We thank Knut Schmidt-Nielsen, William Bretz, and Marvin Bernstein for useful advice, Carl Mills for the use of a flow meter, Vance Tucker for the use of the wind tunnel, and LeRoy Smith for assistance in the field.  相似文献   

17.
Many hoarding rodents use burrows not only for dwelling and protection from natural enemies, but also for food storage. However, little is known how burrows used by scatter-hoarding animals influence their foraging behaviors. In addition, handling time for a given food item has a fundamental impact on hoarding strategies of these hoarding animals: food items with longer handling time are more likely to be hoarded due to increasing predation risk because the animals spend more time outside their burrows if they consumed such food. By providing with two types of artificial burrows (aboveground vs. underground) and two types of food items (i.e. seeds) with contrasting handling times, we investigated how burrow condition and handling time co-influence hoarding strategies of a key scatter-hoarding rodent, Edward's long-tailed rat (Leopoldamys edwardsi) in large enclosures in southwest China. We found that only a few animals larder-hoarded fewer seeds when only aboveground burrows were available, while over 80% of the animals preferred to use the underground burrows and hoard significantly more seeds in the burrows when both aboveground and underground burrows were provided simultaneously. We also found that seed handling time significantly affected hoarding strategies of the animals: they consumed and/or scatter-hoarded more Camellia oleifera seeds with shorter handling time outside the burrow, but consumed and larder-hoarded more Lithocarpus harlandii seeds with longer handling time in underground burrows. Our study indicates that both burrow types and seed handling time have important impacts on hoarding strategies of scatter-hoarding animals.  相似文献   

18.
Geomorphology, vegetation and tidal fluxes are usually identified as the factors introducing variation in the flushing of particulate organic matter (POM) from tidal marshes to adjacent waters. Such variables may, however, be insufficient to explain export characteristics in marshes inhabited by ecosystem engineers that can alter the quantity and quality of POM on the marsh surface that is subject to tidal flushing. In this study we evaluated the balance between transfer of buried sedimentary organic carbon (C) to the marsh surface due to crab excavation (measured from the mounds of sediment excavated from burrows) and outputs of C from the surface due to sediment deposition within crab burrows (estimated from sediment deposited within PVC burrow mimics), in a Southwestern Atlantic salt marsh supporting dense (approximately 70 ind m−2) populations of the crab Chasmagnathus granulatus. C excavation by crabs was much greater than deposition of C within crab burrow mimics. Per area unit estimates of the balance between these two processes indicated that crabs excavated 5.98 g m−2 d−1 and 4.80 mg m−2 d−1 of total and readily (10 d) labile C, respectively. However, sediments excavated by crabs showed a significantly lower content of both total and readily-labile C than sediment collected in burrow mimics. This indicates that ecosystem engineering by burrowing crabs causes a net decrease in the concentration of C in the superficial sediment layers and, thus, an overall decrease in the amount of C that can be washed out of the marsh by tidal action. Incorporating the in situ activities of ecosystem engineers in models of marsh export should enhance understanding of the function of marshes in estuarine ecosystems.  相似文献   

19.
Some fish species living in mudflats construct burrows for dwelling and hiding. The goby Parapocryptes serperaster is a burrowing fish in mudflats of many estuaries in South East Asia. This study was carried out in the Mekong Delta, Vietnam, to examine burrow morphology and usage by this species. Morphology of the burrows constructed by P. serperaster was investigated by resin castings in situ to obtain the physical structure and configuration of each burrow. Fish from the burrows were caught and measured before burrow casts were made. Fish burrows comprised several openings, a few branching tunnels and multi-bulbous chambers. The surface openings were circular, and the shapes of branching tunnels were nearly round. The burrows had interconnected tunnels and various short cul-de-sac side branches. The burrow structure differed between fish sizes, but burrow dimensions were positively correlated with fish size, indicating that larger fish can make larger and more sophisticated burrow. The burrow structure and dimensions were not different between the dry and wet seasons. Laboratory observations showed that P. serperaster used body movements to dig burrows in the sediment. Burrows could provide a low-tide retreat and protection from predators, but were not used for spawning and feeding for this goby species. This study indicates that the burrowing activity of gobies is an important adaptation for living in shallow and muddy habitats.  相似文献   

20.
Burial of aboveground plant litter by animals reduces the amount available for surface transport and places it into a different environment, affecting decomposition rates and fluxes of organic matter to adjacent ecosystems. Here we show that in a Southwestern Atlantic salt marsh the burrowing crab Neohelice granulata buries aboveground plant litter at rates (0.5–8 g m?2 day?1) comparable to those of litter production (3 g m?2 day?1). Buried litter has a low probability (0.6%) of returning to the marsh surface. The formation of burrow excavation mounds on the marsh surface is responsible for most litter burial, whereas litter trapped in burrows was an order of magnitude lower than rates of burial under excavation mounds. Crab exclusion markedly increased surface litter accumulation (3.5-fold in just 21 days). Tides with the potential to transport significant amounts of surface litter are infrequent; hence, most litter is buried before it can be transported elsewhere or decomposes on the surface. Crab litter burial can account for the observed low levels of surface litter accumulation in this ecosystem and likely drives organic matter transformation and export. The impacts of ecosystem engineering by this crab species are therefore substantial and comparable in magnitude to the large effects found for tropical crabs and other litter-burying organisms, such as anecic earthworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号