首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotope values for a range of size classes of Hyporhamphus regularis ardelio from Moreton Bay, south‐east Australia were determined. There was a positive linear relationship between δ13C and standard length (LS)(δ13C = 0·034 LS ? 16·23; r2 = 0·78). δ13C ranged from ?8·48 to ?17·29‰ with the smallest size class (50 mm LS) being on average 1·04‰ enriched with respect to that of zooplankton (Temora turbinata) and 7·97‰ depleted compared to Zostera capricorni. δ13C was positively correlated with LS(P < 0·01)(more enriched with increasing LS) with those fish of the largest size class (225 mm LS) being 9·86 and 0·84‰ enriched than T. turbinata and Z. capricorni, respectively. There was no detectable trend in δ15N values with LS(P > 0·01) with δ15N, ranging from 9·18 to 11·00‰. Fish of all size classes were on average 2·32 and 7·63‰ more enriched than zooplankton and seagrass, respectively. Carbon isotope data indicate that H. r. ardelio commence life as carnivores and change to a diet in which seagrass is the primary carbon source. The dependence on animal matter, however, is always present. Due to the low percentage of nitrogen in Z. capricorni(2·5%) compared to zooplankton (9·1%) it appears that nitrogen from zooplankton is necessary throughout their life history with the carbon requirements for these fish coming chiefly from Z. capricorni.  相似文献   

2.
This study establishes the bioenergetics budget of juvenile whitespotted bamboo shark Chiloscyllium plagiosum by estimating the standard metabolic rate (RS), measuring the effect of body size and temperature on the RS, and identifying the specific dynamic action (RSDA) magnitude and duration of that action in juvenile whitespotted bamboo sharks. The mean ±s .d . (RS) of six fish (500–620 g) measured in a circular closed respirometry system was 30·21 ± 5·68 mg O2 kg?1 h?1 at 18° C and 70·38 ± 14·81 mg O2 kg?1 h?1 at 28° C, respectively. There were no significant differences in RS between day and night at either 18 or 28° C (t‐test, P > 0·05). The mean ±s .d . Q10 for 18–28° C was 2·32 ± 0·06 (n = 6). The amount of oxygen consumed per hour changed predictably with body mass (M; 295–750 g) following the relationship: (n = 40, r2= 0·92, P < 0·05). The mean magnitude of RSDA was 95·28 ± 17·55 mg O2 kg?1 h?1. The amount of gross ingested energy (EI) expended as RSDA ranged from 6·32 to 12·78% with a mean ±s .d . of 8·01 ± 0·03%. The duration of the RSDA effect was 122 h. The energy content of juvenile whitespotted bamboo shark, squid and faeces determined by bomb calorimeter were 19·51, 20·3 and 18·62 kJ g dry mass?1. A mean bioenergetic budget for juvenile whitespotted bamboo sharks fed with squid at 18° C was 100C = 29·5G + 31·9RS+ 28·2RSDA+ 6·7F + 2·1E + 1·6U, where C = consumption, G = growth, F = egestion, E = excretion and U = unaccounted energy.  相似文献   

3.
Age and growth parameters were derived for blue‐spotted maskray Neotrygon kuhlii from Moreton Bay in subtropical eastern Australia. Maximum age estimates of 13 and 10 years were obtained from female (n = 76) and male (n = 44) N. kuhlii, respectively. Estimated ages at maturity for 50% of females and males were 6·32 and 3·95 years, respectively. A three‐parameter power function provided the best statistical fit to size at age data in both sexes, providing parameter estimates of y0 = 163·13, a = 58·52 and b = 0·58 for females and y0 = 165·13, a = 59·02 and b = 0·54 in males. The two‐parameter von Bertalanffy growth function was used to estimate biological parameters based on disc width (WD) for both female (WD∞ = 465·81 mm, K = 0·13 year?1, b = 0·63) and male N. kuhlii (WD∞ = 385·19 mm, K = 0·20 year?1, b = 0·54). Annual band‐pair deposition was observed in three calcein‐injected N. kuhlii after periods of liberty ranging from 631 to 1081 days. Centrum edge analysis indicated that annual band‐pair formation was generally consistent within this population, with translucent bands formed over spring and summer and opaque bands formed in autumn and winter. Individual growth rates obtained from tagged specimens were similar to power function growth predictions. These results support previous characterizations of this common trawl by‐catch species as comparatively resilient to non‐targeted catches, although higher catch rates outside Australia infer a need for cautious management.  相似文献   

4.
The inland silverside, Menidia beryllina (Cope), is an annual zooplanktivore that occurs in estuarine and freshwater habitats along the Atlantic and Gulf of Mexico coasts and drainages of the United States. Experiments were conducted at 25 ± 1°C to quantify the relationship between mean dry weight (WD) and rates of energy gain from food consumption (C), and energy losses as a result of respiration (R) and ammonia excretion (E) during routine activity and feeding by groups of fish. The absorption efficiency of ingested food energy (A) was also quantified. Rates of C, E, and R increased with WD by factors (b in the equation y = aWDb) equal to 0.462, 0.667, and 0.784, respectively. Mean (±SE) rates of energy loss during feeding were 1.6 ± 0.1 (R) and 3.4 ± 0.6 (E) times greater than those for unfed fish. Absorption efficiency was independent of WD and estimated to be 89% of C. From these measurements, the surplus energy available for growth and activity (G) and growth efficiency (K1) were estimated. Over the range in sizes of juveniles and adults (5–500 mg WD), predicted G and K1 values decreased from 7.42 to 0.20 J mg fish?1 day?1 and 63 to 21%, respectively. Measured and predicted bioenergetic parameters are discussed within an ecological context for a northern population of this species.  相似文献   

5.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

6.
Gastric evacuation (GE) experiments were performed on brook trout Salvelinus fontinalis fed commercial food pellets. The experiments included small fish (36 g; 15 cm total length, LT) fed meals of 0·2, 0·4 and 0·8 g and large fish (152 g; 23 cm) fed meals of 0·8, 2·0 and 4·0 g at temperatures ranging from 15·1 to 18·2° C. The stomach contents were thereafter sampled and weighed at 3 h intervals until the first empty stomach was observed. The course of GE was examined by use of a general power function of the data that revealed that the square‐root function described the GE rate (GER) by the current stomach content mass independently of original meal size. Using the square‐root function, the relationship between GER and fish size was described by a power function of fish length, whereas the effect of temperature was described by a simple exponential function. GER of the commercial pellets fed to S. fontinalis could thus be described by (g h?1), where St is stomach mass (g) at time t (h), L is total fish length (cm) and T is temperature (° C). The result of this study should provide a useful tool for planning of feeding regimes in production of S. fontinalis by optimizing growth and minimizing food waste.  相似文献   

7.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

8.
Atlantic salmon Salmo salar smolts were produced with similar energetic states as wild S. salar and the effect of low energetic state on smolt migration was tested. The total energetic state of the fish (body lipids and proteins) in the spring was correlated with Fulton's condition factor (K). Fish at a low energetic state swam slower but migrated further than fish at a higher energetic state when tested in two experimental streams. During a period of starvation throughout the winter and spring, fish conserved their body‐lipid reserves at 1·5% by using more protein as an energy source and the metabolic shift occurred between 3·5 and 1·5% body lipids. An energetic state of approximately 3·5 kJ g?1 (K ≈ 0·65) appeared to be the critical limit for survival.  相似文献   

9.
Aims: To determine the effects of water activity (aW; 0·995–0·90), temperature (5, 18, 25 and 30°C), time of incubation (7–35 days) and their interactions on tenuazonic acid (TA) production on 2% soybean‐based agar by two Alternaria alternata strains isolated from soybean in Argentina. Methods and Results: TA production by two isolates of A. alternata was examined under interacting conditions of aW, temperature and time of incubation on 2% soybean‐based agar. Maximum TA production was obtained for both strains at 0·98 aW, but at 30 and 25°C for the strains for RC 21and RC 39, respectively. The toxin concentration varied considerably depending on aW, temperature, incubation time and strain interactions. TA was produced over the temperature range from 5 to 30°C and aW range from 0·92 to 0·995, however at 5 and 18°C little TA was produced at aW below 0·94. Contour maps were developed from these data to identify areas where conditions indicate a significant risk for TA accumulation. Conclusions: The optimum and marginal conditions for TA production by A. alternata on soybean‐based agar were identified. The results indicated that TA production by A. alternata is favoured by different temperatures in different strains. Significance and Impact of the Study: Data obtained provide very useful information for predicting the possible risk factors for TA contamination of soybean as the aW and temperature range used in this study simulate those occurring during grain ripening. The knowledge of TA production under marginal or sub‐optimal temperature and aW conditions for growth are relevant as improper storage conditions accompanied by elevated temperature and moisture content in the grain can favour further mycotoxin production and lead to reduction in grain quality.  相似文献   

10.
Key components of swimming metabolism: standard metabolism (Rs), active metabolism (Ra) and absolute aerobic scope for activity (RaRs) were determined for small age 0 year Atlantic cod Gadus morhua. Gadus morhua juveniles grew from 0·50 to 2·89 g wet body mass (MWB) over the experimental period of 100 days, and growth rates (G) ranged from 1·4 to 2·9% day?1, which decreased with increasing size. Metabolic rates were recorded by measuring changes in oxygen consumption over time at different activity levels using modified Brett‐type respirometers designed to accommodate the small size and short swimming endurance of small fishes. Power performance relationships were established between oxygen consumption and swimming speed measurements were repeated for individual fish as each fish grew. Mass‐specific standard metabolic rates () were calculated from the power performance relationships by extrapolating to zero swimming speed and decreased from 7·00 to 5·77 μmol O2 g?1 h?1, mass‐specific active metabolic rates () were calculated from extrapolation to maximum swimming speed (Umax) and decreased from 26·18 to 14·35 μmol O2 g?1 h?1 and mass‐specific absolute scope for activity was calculated as the difference between active and standard metabolism () and decreased from 26·18 to 14·35 μmol O2 g?1 h?1 as MWB increased. Small fish with low Rs had bigger aerobic scopes but, as expected, Rs was higher in smaller fish than larger fish. The measurements and results from this study are unique as Rs, Ra and absolute aerobic scopes have not been previously determined for small age 0 year G. morhua.  相似文献   

11.
The influence of irradiance, photoperiod and temperature was determined for the growth kinetics of the diatoms Aulacoseira subarctica, Stephanodiscus astraea and Stephanodiscus hantzschii and the results compared with those of cyanobacteria. Irradiance and photoperiod relationships were qualitatively similar to those for cyanobacteria in that: (1) growth rate (K) was proportionally greater under short photoperiods, with ratios of K under continuous light to K under 3:21 light:dark (LD) cycles of 1·50, 1·80 and 2·96 for A. subarctica, S. astraea and S. hantzschii respectively; (2) at subsaturating irradiances, K was proportional to irradiance and independent of temperature with a negligible predicted maintenance growth rate requirement. Apparent growth efficiencies (GE) at subsaturating irradiances were 0·26±0·03, 0·42±0·03 and 0·50±0·03 divisions mol-1m2 for A. subarctica, S. astraea and S. hantzschii with the values for Stephanodiscus species comparable to values for Oscillatoria species. Under a 3:21 LD cycle at 4 °C, light-saturated growth rates were 0·066±0·004, 0·197±0·033 and 0·285±0·018 divisions day-1 for A. subarctica, S. astraea and S. hantzschii. S. hantzschii growth rate at 4 °C exceeded maximum Oscillatoria growth rates at 23 °C and the S. astraea growth rate at 4 °C was equivalent to O. agardhii growth rate at 20 °C. Temperature increases above 4 °C gave Q10 values between 4 °C and 12 °C of 3·68, 2·39 and 1·92 for A. subarctica, S. astraea and S. hantzschii, but higher temperatures resulted in minor increases in K. S. astraea growth rate peaked at 16 °C, declining sharply at higher temperatures. February to March in situ growth rates in Lough Neagh, mean temperature 4·3 °C, showed that the A. subarctica in situ K of 0·058 divisions day-1 was close to the laboratory K at 4 °C, but that S. astraea in situ K of 0·101 divisions day-1 was lower than the laboratory K at 4 °C.  相似文献   

12.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

13.
Streamside measurements of critical thermal maxima (Tcrit), swimming performance (Ucrit), and routine (Rr) and maximum (Rmax) metabolic rates were performed on three populations of genetically distinct redband trout Oncorhynchus mykiss in the high‐desert region of south‐eastern Oregon. The Tcrit values (29·4 ± 0·1° C) for small (40–140 g) redband trout from the three streams, and large (400–1400 g) redband trout at Bridge Creek were not different, and were comparable to published values for other salmonids. At high water temperatures (24–28° C), large fish incurred higher metabolic costs and were more thermally sensitive than small fish. Ucrit(3·6 ± 0·1 LF s?1), Rr(200 ± 13 mg O2 kg?0·830 h?1) and metabolic power (533 ± 22 mg O2 kg?0·882 h?1) were not significantly different between populations of small redband trout at 24° C. Rmax and metabolic power, however, were higher than previous measurements for rainbow trout at these temperatures. Fish from Bridge Creek had a 30% lower minimum total cost of transport (Cmin), exhibited a lower refusal rate, and had smaller hearts than fish at 12‐mile or Rock Creeks. In contrast, no differences in Ucrit or metabolism were observed between the two size classes of redband trout, although Cmin was significantly lower for large fish at all swimming speeds. Biochemical analyses revealed that fish from 12‐mile Creek, which had the highest refusal rate (36%), were moderately hyperkalemic and had substantially lower circulating levels of free fatty acids, triglycerides and albumin. Aerobic and anaerobic enzyme activities in axial white muscle, however, were not different between populations, and morphological features were similar. Results of this study: 1) suggest that the physiological mechanisms that determine Tcrit in salmonids are highly conserved; 2) show that adult (large) redband trout are more susceptible to the negative affects of elevated temperatures than small redband trout; 3) demonstrate that swimming efficiency can vary considerably between redband trout populations; 4) suggest that metabolic energy stores correlate positively with swimming behaviour of redband trout at high water temperatures; 5) question the use of Tcrit for assessing physiological function and defining thermal habitat requirements of stream‐dwelling salmonids like the redband trout.  相似文献   

14.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

15.
Release‐recapture experiments were conducted to examine temporal changes of the carbon and nitrogen stable isotope (δ13C and δ15N) ratios in the muscle tissue of artificially produced Japanese flounder Paralichthys olivaceus, juveniles. About 9000 juveniles (mean ± s .d . 43·3 ± 5·2 mm in standard length and 1·07 ± 0·37 g, n = 15) were released in each of three coastal areas: Chojagasaki, Arasaki and Jogashima with different geographical conditions, along Sagami Bay, Pacific coast of central Japan. Recapture efforts were made on 4, 11, 18, 40 and 55 days after the release. The stable isotope ratios, RNA:DNA ratio, stomach content mass (per body mass Msc) and condition factor (K) of recaptured individuals were measured. The mean ± s .d . δ13C and δ15N values (n = 15) were ?18·3 ± 0·2‰ and 12·2 ± 0·2‰, respectively at the release. Wild Japanese flounder juveniles were captured only in Chojagasaki, and the δ13C and δ15N values (n = 6) were ?14·0 ± 0·4‰ and 13·2 ± 0·7‰, respectively; these values were considered to represent the wild diet. Nutritional conditions of the released and recaptured juveniles as determined by the RNA : DNA ratio, MSC and K were indicated to be the best in Chojagasaki, in which the stable isotope ratios gradually shifted towards and reached the wild values within 40 days. This result along with stomach content analyses suggested that the released juveniles had acquired a wild feeding habit. In Arasaki and Jogashima, nutritional conditions of the recaptured juveniles were poorer, with no clear changes in the stable isotope ratios. Greatly varied stable isotope ratio values were observed in the juveniles recaptured in Chojagasaki 11 days after the release, ranging from the release levels to the wild levels. The extent of changes in the stable isotope ratios had a positive correlation to the RNA : DNA ratio and K of these juveniles (r = 0·87, n = 10 and r = 0·83, n = 18, respectively). The analyses of stable isotope ratios coupled with nutritional condition were considered to be an effective tool to examine post‐release feeding adaptation of Japanese flounder juveniles.  相似文献   

16.
Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h?1 at 30 cm s?1 (c. 0·5 BL s?1) to 3347 mg O2 h?1 at 170 cm s?1 (c. 2·3 BL s?1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg?1 h?1, and were similar to other Oncorhynchus species. At all temperatures (8, 12·5 and 17° C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s?1, and a third‐order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s?1 (2·1 BL s?1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s?1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s?1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s?1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168·2 cm s?1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ≥80% of the Ucrit.  相似文献   

17.
Reproductive variables are provided for batoids regularly taken as by‐catch in the east coast otter‐trawl fishery on the inner‐mid continental shelf off the south‐east and central coasts of Queensland, Australia. Total length at maturity (LT50 and 95% c.i .) for the eastern shovelnose ray Aptychotrema rostrata was 639·5 mm (617·6–663·4 mm) for females and 597·3 mm (551·4–648·6 mm) for males. Litter size (n = 9) ranged from nine to 20 (mean ± s.e. = 15·1 ± 1·2). This species exhibited a positive litter size–maternal size relationship. Disc width at maturity (WD50 and 95% c.i .) for the common stingaree Trygonoptera testacea was 162·7 mm (155·8–168·5 mm) for females and 145·9 mm (140·2–150·2 mm) for males. Gravid T. testacea (n = 6) each carried a single egg in the one functional (left) uterus. Disc width at maturity (WD50 and 95% c.i .) for the Kapala stingaree Urolophus kapalensis was 153·7 mm (145·1–160·4 mm) for females and 155·2 mm (149·1–159·1 mm) for males. Gravid U. kapalensis (n = 16) each carried a single egg or embryo in the one functional (left) uterus. A single female yellowback stingaree Urolophus sufflavus carried an embryo in each uterus. A global review of the litter sizes of shovelnose rays (Rhinobatidae) and stingarees (Urolophidae) is provided.  相似文献   

18.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

19.
In all larval stages of Carcinus maenas L. oxygen consumption was measured at three temperatures (12,18,25 °C). Values increased during development and were in the range of 0.037 ± 0.01 (zoea-1, 12°C, x? ± 95% CL) to 0.734 ± 0.047 μl O2 · h?1 · ind?1 (megalopa, 25 °C). Growing larvae showed temperature dependent trends in weight specific respiration rates (referred to dry wt; DW), with values between ≈2.4 and 9.4 μl O2· h?1·mg DW?1. Increase in oxygen consumption of megalops did not differ much at temperatures between 18 and 25 °C. This points to an exceptional physiological position of this stage. Fed zoea-1 of C. maenas (18 °C) revealed growth rates in terms of 40% DW, 20% carbon (C), 30% nitrogen (N) and 65% hydrogen (H). At the same time larvae gained individual energy by 13% (J · ind?1), while weight specific energy dropped by ≈ 19% (J · mg DW?1) during the first day and remained constant until the moult. Starved zoea-1 of C. maenas (18 ° C) gained ≈ 20 % in DW through the first day, probably caused by inorganic salts which enter the organism after the moult of the prezoea. DW dropped to ≈ 25 % of initial value, when starvation continued. Single components decreased by ≈50% (C), 54% (N), 57% (J · ind?1). Weight specific energy (J · mg DW?1) decreased by 40% during the first 4 days of starvation, remaining constant thereafter. Individual respiration rate (R) dropped by 61 %, weight specific respiration rate (QO2) by 55 %. Individual energy loss in starved zoea-1 was 0.077 J over a period of 11 days. In this period ≈ 9.3 μl O2·ind?1 were consumed. Thus effective oxygen capacity was lower than in growing larvae. It dropped to 5.3 J·mlO2?1 after 4 days and remained constant if starvation continued, i.e. 65 % of possible energy loss occurred during the first 4 days. Decrease in requirement for oxygen and its effective capacity were both recognized as independent components of survival during starvation. Partitioning of energy through individual larval development of C. maenas was investigated for all five larval stages. The cumulative budget could be calculated: consumption (C) = 28.23 J, growth (G) = 0.92 J, exoskeleton (Ex) = 0.20 J, metabolism (M) = 5.30 J, egestion and excretion (E) = 21.82 J. Mean gross and net growth efficiency were, K1 = 3.3% and K2 = 14.8%, respectively.  相似文献   

20.
The kinetic parameters of the inhibition of pigeon brain acetylchlolinesterase (AChE) by procaine hydrochloride were investigated. Procaine (0·083–1·67 mM) reversibly inhibited AChE activity (15–83 percent) in a concentration dependent manner, the IC50 being about 0·38 mM. The Michaelis-Menten constant (Km) for the hydrolysis of acetylthiocholine iodide was found to be 1·53 × 10?4 M and the Vmax was 1·06 μmol min?1 mg?1 protein. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition is of the linear mixed type which is considered to be a mixture of partial competitive and pure non-competitive. The values of Ki(slope) and Ki (intercepts) were estimated as 0·14 mM and 0·22 mM respectively by the primary Dixon and by the secondary replots of the Lineweaver-Burk plot. The Ki′/Ki ratio shows that procaine has a greater affinity of binding for the peripheral than for the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号