首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The theoretical power density spectrumS(f) of ion current noise is calculated from several models of the sodium channel gating mechanism in nerve membrane. Sodium ion noise experimental data from the frog node of Ranvier [Conti, F.,et al. (1976),J. Physiol. (London) 262:699] is used as a test of the theoretical results. The motivation for recent modeling has been evidence for a coupling between sodium activation and inactivation from voltage clamp data. The two processes are independent of one another in the Hodgkin and Huxley (HH) model [Hodgkin, A.L., Huxley, A.F. (1952),J. Physiol. (London) 117:500] The noise data is consistent with HH, as noted by Contiet al. (1976). The theoretical results given here appear to indicate that only one case of coupling models is also consistent with the noise data.  相似文献   

2.
Several cloned ClC-type Cl channels open and close in a voltage-dependent manner. The Torpedo electric organ Cl channel, ClC-0, is the best studied member of this gene family. ClC-0 is gated by a fast and a slow gating mechanism of opposite voltage direction. Fast gating is dependent on voltage and on the external and internal Cl concentration, and it has been proposed that the permeant anion serves as the gating charge in ClC-0 (Pusch, M., U. Ludewig, A. Rehfeldt, and T.J. Jentsch. 1995. Nature (Lond.). 373:527–531). The deactivation at negative voltages of the muscular ClC-1 channel is similar but not identical to ClC-0. Different from the extrinsic voltage dependence suggested for ClC-0, an intrinsic voltage sensor had been proposed to underlie the voltage dependence in ClC-1 (Fahlke, C., R. Rüdel, N. Mitrovic, M. Zhou, and A.L. George. 1995. Neuron. 15:463–472; Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rüdel. 1996. Biophys. J. 71:695–706). The gating model for ClC-1 was partially based on the properties of a point-mutation found in recessice myotonia (D136G). Here we investigate the functional effects of mutating the corresponding residue in ClC-0 (D70). Both the corresponding charge neutralization (D70G) and a charge conserving mutation (D70E) led to an inwardly rectifying phenotype resembling that of ClC-1 (D136G). Several other mutations at very different positions in ClC-0 (K165R, H472K, S475T, E482D, T484S, T484Q), however, also led to a similar phenotype. In one of these mutants (T484S) the typical wild-type gating, characterized by a deactivation at negative voltages, can be partially restored by using external perchlorate (ClO4 ) solutions. We conclude that gating in ClC-0 and ClC-1 is due to similar mechanisms. The negative charge at position 70 in ClC-0 does not specifically confer the voltage sensitivity in ClC-channels, and there is no need to postulate an intrinsic voltage sensor in ClC-channels.  相似文献   

3.
A theory is proposed for determining the location of a reaction site on a protein of known tertiary structure with an asymmetric charge distribution by an analysis of the effect of ionic strength on the rate of reaction of the protein with a small ion, using equations of Brønsted (J. N. Brønsted, 1922, Z. Phys, Chem. 102:169-207), Debye and Hückel (P. Debye and E. Hückel, 1923, Phys. Z. 24:185-206), and Kirkwood (J. G. Kirkwood, 1934, J. Chem. Phys. 2:351-361). The theory is based on the fact that the dipole moment of the transition complex differs from that of the protein, which will be reflected in the ionic strength dependence of the reaction. The location of the small ion with respect to the dipole axis of the protein can be calculated from this difference. For protein-protein reactions, an a priori assumption has to be made about the orientation of one of the reaction partners, since many different orientations of the reactants with respect to each other result in dipole moments of the same magnitude.  相似文献   

4.
5.
Kinetic effects of osmotic stress on sodium ionic and gating currents have been studied in crayfish giant axons after removal of fast inactivation with chloramine-T. Internal perfusion with media made hyperosmolar by addition of formamide or sucrose, reduces peak sodium current (before and after removal of fast inactivation with chloramine-T), increases the half-time for activation, but has no effect on tail current deactivation rate(s). Kinetics of ON and OFF gating currents are not affected by osmotic stress. These results confirm (and extend to sodium channels) the separation of channel gating mechanisms into voltage-sensitive and solvent-sensitive processes recently proposed by Zimmerberg J., F. Bezanilla, and V. A. Parsegian. (1990. Biophys. J. 57:1049-1064) for potassium delayed rectifier channels. Additionally, the kinetic effects produced by hyperosmolar media seem qualitatively similar to the kinetic effects of heavy water substitution in crayfish axons (Alicata, D. A., M. D. Rayner, and J. G. Starkus. 1990. Biophys. J. 57:745-758). However, our observations are incompatible with models in which voltage-sensitive and solvent-sensitive gating processes are presumed to be either (a) strictly sequential or, (b) parallel and independent. We introduce a variant of the parallel model which includes explicit coupling between voltage-sensitive and solvent-sensitive processes. Simulations of this model, in which the total coupling energy is as small as 1/10th of kT, demonstrate the characteristic kinetic changes noted in our data.  相似文献   

6.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel that is regulated by protein kinase A and cytosolic nucleotides. Previously, Sheppard and Welsh reported that the sulfonylureas glibenclamide and tolbutamide reduced CFTR whole cell currents. The aim of this study was to quantify the effects of tolbutamide on CFTR gating in excised membrane patches containing multiple channels. We chose tolbutamide because weak (i.e., fast-type) open channel blockers introduce brief events into multichannel recordings that can be readily quantified by current fluctuation analysis. Inspection of current records revealed that the addition of tolbutamide reduced the apparent single-channel current amplitude and increased the open-channel noise, as expected for a fast-type open channel blocker. The apparent decrease in unitary current amplitude provides a measure of open probability within a burst (P0 Burst), and the resulting concentration-response relationship was described by a simple Michaelis-Menten inhibition function. The concentration of tolbutamide causing a 50% reduction of Po Burst (540 +/- 20 microM) was similar to the concentration producing a 50% inhibition of short-circuit current across T84 colonic epithelial cell monolayers (400 +/- 20 microM). Changes in CFTR gating were then quantified by analyzing current fluctuations. Tolbutamide caused a high-frequency Lorentzian (corner frequency, fc > 300 Hz) to appear in the power density spectrum. The fc of this Lorentzian component increased as a linear function of tolbutamide concentration, as expected for a pseudo-first-order open-blocked mechanism and yielded estimates of the on rate (koff = 2.8 +/- 0.3 microM-1 s-1), the off rate (kon = 1210 +/- 225 s-1), and the dissociation constant (KD = 430 +/- 80 microM). Based on these observations, we propose that there is a bimolecular interaction between tolbutamide and CFTR, causing open channel blockade.  相似文献   

7.
The anion channel protein from Clavibacter michiganense ssp. nebraskense (Schürholz, Th. et al. 1991, J. Membrane Biol. 123: 1-8) was analyzed at different concentrations of KCl and KF. At 0.8 M KCl the conductance G(Vm) increases exponentially from 21 pS at 50 mV up to 53 pS at Vm = 200 mV, 20°C. The concentration dependence of G(Vm) corresponds to a Michaelis-Menten type saturation function at all membrane voltage values applied (0-200 mV). The anion concentration K0.5, where G(Vm) has its half-maximum value, increases from 0.12 M at 50 mV to 0.24 M at 175 mV for channels in a soybean phospholipid bilayer. The voltage dependence of the single channel conductance, which is different for charged and neutral lipid bilayers, can be described either by a two-state flicker (2SF) model and the Nernst-Planck continuum theory, or by a two barrier, one-site (2B1S) model with asymmetric barriers. The increase in the number of open channels after a voltage jump from 50 mV to 150 mV has a time constant of 0.8 s. The changes of the single-channel conductance are much faster (<1 ms). The electric part of the gating process is characterized by the (reversible) molar electrical work ΔGθel = ρZgFVm ≈ -1.3 RT, which corresponds to the movement of one charge of the gating charge number |Zg| = 1 across the fraction ρ = ΔVm/Vm = 0.15 of the membrane voltage Vm = 200 mV. Unlike with chloride, the single channel conductance of fluoride has a maximum at about 150 mV in the presence of the buffer PIPES (≥5 mM, pH 6.8) with K0.5 ≈ 1 M. It is shown that the decrease in conductance is due to a blocking of the channel by the PIPES anion. In summary, the results indicate that the anion transport by the Clavibacter anion channel (CAC) does not require a voltage dependent conformation change of the CAC.  相似文献   

8.
Single sodium channels from the squid giant axon   总被引:9,自引:4,他引:5       下载免费PDF全文
Since the work of A. L. Hodgkin and A. F. Huxley (1952. J. Physiol. [Lond.].117:500-544) the squid giant axon has been considered the classical preparation for the study of voltage-dependent sodium and potassium channels. In this preparation much data have been gathered on macroscopic and gating currents but no single sodium channel data have been available. This paper reports patch clamp recording of single sodium channel events from the cut-open squid axon. It is shown that the single channel conductance in the absence of external divalent ions is approximately 14 pS, similar to sodium channels recorded from other preparations, and that their kinetic properties are consistent with previous results on gating and macroscopic currents obtained from the perfused squid axon preparation.  相似文献   

9.
We have studied the anion-dependent gating of roflamycoin ion channels using spectral analysis of noise in currents through multichannel planar lipid bilayers. We have found that in addition to low frequency current fluctuations that may be attributed to channel switching between open and closed conformations, roflamycoin channels exhibit a pronounced higher frequency noise indicating that the open channel conductance has substates with short lifetimes. This noise is well described by a Lorentzian spectrum component with a characteristic cutoff frequency that depends on the type of halide anions according to their position in the Hofmeister series. It is suggested that transitions between the substates correspond to a reversible ionization of the channel by a penetrating anion that binds to the channel structure, more chaotropic anions being bound for longer times. Within a framework of a two-substate model, the duration of the substate with reduced electrostatic barrier for cation current varies exponentially with anion electron polarizability. This explains two features of the roflamycoin channel reported earlier: the increase in apparent single-channel conductance along the series F- < Cl- < Br- < I- and the reverse of channel selectivity from anionic for KF to cationic for KI.  相似文献   

10.
It has been known that a single Müller cell displays a large variation in the cytoskeletal compositions along its cell body, suggesting different mechanical properties in different segments. Müller cells are thought to be involved in many retinal diseases such as retinoschisis, which can be facilitated by a mechanical stress. Thus, mapping of mechanical properties on localized nano-domains of Müller cells could provide essential information for understanding their structural functions in the retina and roles in their pathological progresses. Using Atomic Force Microscopy (AFM) - based bio-nano-mechanics, we have investigated the local variations of the mechanical properties of Müller cells in vitro. We have a particular interest in identifying elastic moduli in regions closer to three distinctive segments of the cells - process, endfoot, and soma. Using the modified spherical AFM probes, we were able to accurately determine mechanical properties, i.e., elastic moduli from the obtained force-distance curves. We found that the regions closer to soma were mechanically more compliant than regions closer to endfoot and process of Müller cells. We found that this lateral heterogeneity of the mechanical compliance within a single Müller cell is consistent with reports from other cell types. The local variation in mechanical compliances along a single Müller cell may support their diverse mechanical functions in the retina such as a soft mechanical embedding, mechanosensing, and neurotrophic functions for neurons.  相似文献   

11.
The best-known Shaker allele of Drosophila with a novel gating phenotype, Sh(5), differs from the wild-type potassium channel by a point mutation in the fifth membrane-spanning segment (S5) (Gautam, M., and M.A. Tanouye. 1990. Neuron. 5:67-73; Lichtinghagen, R., M. Stocker, R. Wittka, G. Boheim, W. Stühmer, A. Ferrus, and O. Pongs. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:4399-4407) and causes a decrease in the apparent voltage dependence of opening. A kinetic study of Sh(5) revealed that changes in the deactivation rate could account for the altered gating behavior (Zagotta, W.N., and R.W. Aldrich. 1990. J. Neurosci. 10:1799-1810), but the presence of intact fast inactivation precluded observation of the closing kinetics and steady state activation. We studied the Sh(5) mutation (F401I) in ShB channels in which fast N-type inactivation was removed, directly confirming this conclusion. Replacement of other phenylalanines in S5 did not result in substantial alterations in voltage-dependent gating. At position 401, valine and alanine substitutions, like F401I, produce currents with decreased apparent voltage dependence of the open probability and of the deactivation rates, as well as accelerated kinetics of opening and closing. A leucine residue is the exception among aliphatic mutants, with the F401L channels having a steep voltage dependence of opening and slow closing kinetics. The analysis of sigmoidal delay in channel opening, and of gating current kinetics, indicates that wild-type and F401L mutant channels possess a form of cooperativity in the gating mechanism that the F401A channels lack. The wild-type and F401L channels' entering the open state gives rise to slow decay of the OFF gating current. In F401A, rapid gating charge return persists after channels open, confirming that this mutation disrupts stabilization of the open state. We present a kinetic model that can account for these properties by postulating that the four subunits independently undergo two sequential voltage-sensitive transitions each, followed by a final concerted opening step. These channels differ primarily in the final concerted transition, which is biased in favor of the open state in F401L and the wild type, and in the opposite direction in F401A. These results are consistent with an activation scheme whereby bulky aromatic or aliphatic side chains at position 401 in S5 cooperatively stabilize the open state, possibly by interacting with residues in other helices.  相似文献   

12.
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge–carrying arginine residues in skeletal muscle NaV1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only ∼1% of central pore current, but substitution of guanidine for sodium in the extracellular solution increases their size by 13- ± 2-fold. Ethylguanidine is permeant through the R666G gating pore at physiological membrane potentials but blocks the gating pore at hyperpolarized potentials. Guanidine is also highly permeant through the proton-selective gating pore formed by the mutant R666H. Gating pore current conducted by the R666G mutant is blocked by divalent cations such as Ba2+ and Zn2+ in a voltage-dependent manner. The affinity for voltage-dependent block of gating pore current by Ba2+ and Zn2+ is increased at more negative holding potentials. The apparent dissociation constant (Kd) values for Zn2+ block for test pulses to −160 mV are 650 ± 150 µM, 360 ± 70 µM, and 95.6 ± 11 µM at holding potentials of 0 mV, −80 mV, and −120 mV, respectively. Gating pore current is blocked by trivalent cations, but in a nearly voltage-independent manner, with an apparent Kd for Gd3+ of 238 ± 14 µM at −80 mV. To test whether these periodic paralyses might be treated by blocking gating pore current, we screened several aromatic and aliphatic guanidine derivatives and found that 1-(2,4-xylyl)guanidinium can block gating pore current in the millimolar concentration range without affecting normal NaV1.4 channel function. Together, our results demonstrate unique permeability of guanidine through NaV1.4 gating pores, define voltage-dependent and voltage-independent block by divalent and trivalent cations, respectively, and provide initial support for the concept that guanidine-based gating pore blockers could be therapeutically useful.  相似文献   

13.
BACKGROUND: The predictions of the Hodgkin-Huxley model do not accurately fit all the measurements of voltage-clamp currents, gating charge and single-channel currents. There are many quantitative differences between the predicted and measured characteristics of the sodium and potassium channels. For example, the two-state gate model has exponential onset kinetics, whereas the sodium and potassium conductances show S-shaped activation and the sodium conductance shows an exponential inactivation. In this paper we shall examine a more general channel model that can more faithfully represent the measured properties of ionic channels in the membrane of the excitable cell. METHODS: The model is based on the generalisation of the notion of a channel with a discrete set of states. Each state has state attributes such as the state conductance, state ionic current and state gating charge. These variables can have quite different waveforms in time, in contrast with a two-state gate channel model, in which all have the same waveforms. RESULTS: The kinetics of all variables are equivalent: gating and ionic currents give equivalent information about channel kinetics; both the equilibrium values of the current and the time constants are functions of membrane potential. The results are in almost perfect concordance with the experimental data regarding the characteristics of nerve impulse. CONCLUSIONS: The expected values of the gating charge and the ionic conductance are weighted sums of the state occupancy probabilities, but the weights differ: for the expected value of the gating charge the weights are the state gating charges and for the expected value of the ionic conductance the weights are the state conductances. Since these weights are different, the expected values of the gating charge and the ionic conductance will differ.  相似文献   

14.
Fine structure analysis of the stage IVb Phycomyces sporangiophore growing zone (GZ) was performed during steady-state growth using a computer-video digitizer and recorder. By simultaneously measuring the trajectory of two independent particles above and within the GZ, we have confirmed the previous findings of R. Cohen and M. Delbrück (1958 J Cell Comp Physiol 52: 361-388) that the GZ is not uniform. We have been unable to confirm their findings that counterclockwise rotation exists in a mature sporangiophore. The rates of rotation and elongation change independently as a function of position in the GZ. This change is not linear as would be expected if the GZ were uniform. The importance of this finding is discussed in terms of the fibril reorientation model.  相似文献   

15.
In this study, we numerically analyzed the nonlinear Ca2+-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca2+ buffering, and Ca2+ diffusion. The IP3R is a ubiquitous intracellular Ca2+ release channel that plays an important role in the formation of complex spatiotemporal Ca2+ signals such as waves and oscillations. Dynamic subfemtoliter Ca2+ microdomains reveal low copy numbers of Ca2+ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca2+ diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca2+ noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca2+] = 25 μM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca2+ binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2+ noise autocorrelation times decrease the probability of Ca2+ association and consequently increase IP3R activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.  相似文献   

16.
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.  相似文献   

17.
A fast component of displacement current which accompanies the sodium channel gating current has been recorded from the membrane of the giant axon of the squid Loligo forbesii. This component is characterized by relaxation time constants typically shorter than 25 µs. The charge displaced accounts for about 10% (or 2 nC/cm2) of the total displacement charge attributed to voltage-dependent sodium channels. Using a low noise, wide-band voltage clamp system and specially designed voltage step protocols we could demonstrate that this component: (i) is not a recording artifact; (ii) is kinetically independent from the sodium channel activation and inactivation processes; (iii) can account for a significant fraction of the initial amplitude of recorded displacement current and (iv) has a steady state charge transfer which saturates for membrane potentials above + 20 mV and below – 100 mV This component can be modelled as a single step transition using the Eyring-Boltzmann formalism with a quantal charge of 1 e and an asymmetrical energy barrier. Furthermore, if it were associated with the squid sodium channel, our data would suggest one fast transition per channel. A possible role as a sodium channel activation trigger, which would still be consistent with kinetic independence, is discussed. Despite uncertainties about its origin, the property of kinetic independence allows subtraction of this component from the total displacement current to reveal a rising phase in the early time course of the remaining current. This will have to be taken into account when modelling the voltage-dependent sodium channel.  相似文献   

18.
In 1879, Fritz Müller hypothesized that mimetic resemblance in which defended prey display the same warning signal would share the costs of predator education. Although Müller argued that predators would need to ingest a fixed number of prey with a given visual signal when learning to avoid unpalatable prey, this assumption lacks empirical support. We report an experiment which shows that, as the number of unpalatable prey presented to them increased, avian predators attacked higher numbers of those prey. We calculated that, when predators increase attacks, the fitness costs incurred by unpalatable prey can be substantial. This suggests that the survival benefits of mimicry could be lower than Müller proposed. An important finding is, however, that these costs decline in importance as the total number of available prey increases.  相似文献   

19.
The voltage-dependent motility of the outer hair cell is based on a membrane motor densely distributed in the lateral membrane. The gating charge of the membrane motor is manifested as a bell-shaped membrane potential dependence of the membrane capacitance. In this paper it is shown that movements of the gating charge should produce a high-pass current noise described by an inverse Lorentzian similar to the one shown by Kolb and Läuger for ion carriers. The frequency dependence of the voltage-dependent capacitance is also derived. These derivations are based on membrane motor models with two or three states. These two models lead to similar predictions on the capacitance and current noise. It is expected that the examination of the spectral properties of these quantities would be a useful means of determining the relaxation time for conformational transitions of the membrane motor.  相似文献   

20.
A kinetic model of sodium activation gating is presented. The kinetics are based on harmonic analysis of gating current data obtained during large-amplitude sinusoidal voltage clamp in dynamic steady state. The technique classifies gating kinetic schemes into groups based on patterns of the harmonic content in the periodic gating current records. The kinetics that simulate the experimental data contain two independently constrained processes. The model predicts (a) sizable gating currents in response to hyperpolarizing voltage steps from rest; (b) a substantial increase in the initial peak of the gating current following voltage steps from prehyperpolarized potentials; (c) a small delay in the onset of sodium ion current following voltage steps from prehyperpolarized potentials; and (d) flickering during the open state in single channel current records. Although fundamentally different in kinetic structure from the Hodgkin-Huxley model, the present model reproduces the phenomenological development of Na conductance during the initiation and development of action potentials. The implications for possible gating mechanisms are discussed. A model gate is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号