共查询到20条相似文献,搜索用时 15 毫秒
1.
Something on the Side: Axillary Meristems and Plant Development 总被引:5,自引:3,他引:2
Axillary meristems allow the production of secondary growth axes in the shoot systems of plants. As such they make a large
contribution to the plastic developmental potential of plants, allowing them to alter their architecture to suit the prevailing
environment conditions. This review focuses on the formation and activity of axillary meristems, across several model species.
Current topics and problems in the field are discussed. 相似文献
2.
The primary shoot apical meristem of angiosperm plants is formed during embryogenesis. Lateral shoot apical meristems arise postembryonically in the axils of leaves. Recessive mutations at the PINHEAD locus of Arabidopsis interfere with the ability of both the primary shoot apical meristem as well as lateral shoot apical meristems to form. However, adventitious shoot apical meristems can form in pinhead mutant seedlings from the axils of the cotyledons and also from cultred root explants. In this report, the phenotype of pinhead mutants is described, and a hypothesis for the role of the wild-type PINHEAD gene product in shoot meristem initiation is presented. © 1995 Wiley-Liss, Inc. 相似文献
3.
Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis 总被引:13,自引:0,他引:13
Martín AC del Pozo JC Iglesias J Rubio V Solano R de La Peña A Leyva A Paz-Ares J 《The Plant journal : for cell and molecular biology》2000,24(5):559-567
The increase in the ratio of root growth to shoot growth that occurs in response to phosphate (Pi) deprivation is paralleled by a decrease in cytokinin levels under the same conditions. However, the role of cytokinin in the rescue system for Pi starvation remains largely unknown. We have isolated a gene from Arabidopsis thaliana (AtIPS1) that is induced by Pi starvation, and studied the effect of cytokinin on its expression in response to Pi deprivation. AtIPS1 belongs to the TPSI1/Mt4 family, the members of which are specifically induced by Pi starvation, and the RNAs of which contain only short, non-conserved open reading frames. Pi deprivation induces AtIPS1 expression in all cells of wild-type plants, whereas in the pho1 mutant grown on Pi-rich soils, AtIPS1 expression in the root was delimited by the endodermis. This supports the view that pho1 is impaired in xylem loading of Pi, and that long-distance signals controlling the Pi starvation responses act via negative control. Exogenous cytokinins repress the expression of AtIPS1 and other Pi starvation-responsive genes in response to Pi deprivation. However, cytokinins did not repress the increase in root-hair number and length induced by Pi starvation, a response dependent on local Pi concentration rather than on whole-plant Pi status. Our results raise the possibility that cytokinins may be involved in the negative modulation of long-distance, systemically controlled Pi starvation responses, which are dependent on whole-plant Pi status. 相似文献
4.
The effect of different concentrations and activities of cytokinins on the morphogenesis of regenerated Rhododendron forrestii Balf. f. ex Diels. shoots taken from nodal segments were tested. We evaluated zeatin, zeatin riboside, izopentyladenine,
izopentyladenine riboside, kinetin, kinetin riboside, benzylaminopurine, benzylaminopurine riboside. The experimental results
were evaluated by mathematical methods and regression analysis describing the effect of isoprenic and aromatic type of cytokinins.
On the basis of this modelling, maximum axillary shoot production was attained with medium supplemented with 2.0 mg·l−1 izopentyladenine riboside, 2.0 mg·l−1 benzylaminopurine and 20 g·l−1 sucrose. Minimal axillary shoots were produced with kinetin and kinetin riboside. 相似文献
5.
Atta R Laurens L Boucheron-Dubuisson E Guivarc'h A Carnero E Giraudat-Pautot V Rech P Chriqui D 《The Plant journal : for cell and molecular biology》2009,57(4):626-644
We have established a detailed framework for the process of shoot regeneration from Arabidopsis root and hypocotyl explants grown in vitro . Using transgenic plant lines in which the GUS or GFP genes were fused to promoters of developmental genes ( WUS , CLV1 , CLV3 , STM , CUC1 , PLT1 , RCH1 , QC25 ), or to promoters of genes encoding indicators of the auxin response ( DR5 ) or transport ( PIN1 ), cytokinin (CK) response ( ARR5 ) or synthesis ( IPT5 ), or mitotic activity ( CYCB1 ), we showed that regenerated shoots originated directly or indirectly from the pericycle cells adjacent to xylem poles. In addition, shoot regeneration appeared to be partly similar to the formation of lateral root meristems (LRMs). During pre-culture on a 2, 4-dichlorophenoxyacetic acid (2, 4-D)-rich callus-inducing medium (CIM), xylem pericycle reactivation established outgrowths that were not true calli but had many characteristics of LRMs. Transfer to a CK-rich shoot-inducing medium (SIM) resulted in early LRM-like primordia changing to shoot meristems. Direct origin of shoots from the xylem pericycle occurred upon direct culture on CK-containing media without prior growth on CIM. Thus, it appeared that the xylem pericycle is more pluripotent than previously thought. This pluripotency was accompanied by the ability of pericycle derivatives to retain diploidy, even after several rounds of cell division. In contrast, the phloem pericycle did not display such developmental plasticity, and responded to CKs with only periclinal divisions. Such observations reinforce the view that the pericycle is an 'extended meristem' that comprises two types of cell populations. They also suggest that the founder cells for LRM initiation are not initially fully specified for this developmental pathway. 相似文献
6.
Yang F Wang Q Schmitz G Müller D Theres K 《The Plant journal : for cell and molecular biology》2012,71(1):61-70
During post-embryonic shoot development, new meristems are initiated in the axils of leaves. They produce secondary axes of growth that determine morphological plasticity and reproductive efficiency in higher plants. In this study, we describe the role of the bHLH-protein-encoding Arabidopsis gene REGULATOR OF AXILLARY MERISTEM FORMATION (ROX), which is the ortholog of the branching regulators LAX PANICLE1 (LAX1) in rice and barren stalk1 (ba1) in maize. rox mutants display compromised axillary bud formation during vegetative shoot development, and combination of rox mutants with mutations in RAX1 and LAS, two key regulators of axillary meristem initiation, enhances their branching defects. In contrast to lax1 and ba1, flower development is unaffected in rox mutants. Over-expression of ROX leads to formation of accessory side shoots. ROX mRNA accumulates at the adaxial boundary of leaf and flower primordia. However, in the vegetative phase, axillary meristems initiate after ROX expression has terminated, suggesting an indirect role for ROX in meristem formation. During vegetative development, ROX expression is dependent on RAX1 and LAS activity, and all three genes act in concert to modulate axillary meristem formation. 相似文献
7.
Gregoria N. Acedo 《Plant Cell, Tissue and Organ Culture》1986,6(2):109-114
This paper reports on an easy and reproducible method of regenerating Arabidopsis plants from callus culture. A combination of 6-benzylaminopurine (BAP) and -naphthalene acetic acid (NAA) in a Murashige and Skoog's (MS) based medium gives a high percentage of shoot formation in several genotypes. 相似文献
8.
An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype, micro-structure of shoot apical meristem (SAM) and histo-chemical localization of the GUS gene in comparison with the wild type. Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs (such as smaller leaves, shorter petioles), and slower development and flowering time compared to the wild type. Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM, with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type. In addi-tion, analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant, which suggests that the gene trapped by T-DNA may function in the SAM, and T-DNA insertion could influence the functional activity of the related gene in the mutant, lead-ing to alterations in the SAM and a series of phenotypes in the mutant. 相似文献
9.
S. Amutha M. Muruganantham A. Ganapathi 《In vitro cellular & developmental biology. Plant》2006,42(1):26-30
Summary Prolific shoot regeneration was achieved in mungbean Vigna radiata (L.) Wilczek from 3-d-old in vitro cotyledonary node and hypocotyl explants from seedlings derived from mature seeds on Murashige and Skoog (MS) medium supplemented
with thidiazuron (TDZ) (0.9 μM). An initial exposure to TDZ for 20 d and three successive transfers to fresh medium with reduced thidiazuron levels (0.09
μM) resulted in the regeneration of 104 shoots/explant from the cotyledon and 30 shoots/explant from the hypocotyl. Thidiazuron-associated
abnormalities such as short compact shoots, fasciation and leaf growth in the form of rosettes were observed in shoots regenerated
from hypocotyl explants. Both axillary and adventitious shoot formation from the explants were confirmed by histology. Through
repectitive cycles of regeneration in the presence of TDZ, the number of shoots that could be obtained from the two explant
classes within 80 d was significantly higher than with previous reports in mungbean 相似文献
10.
11.
Simone D'Angeli Paola Lauri Walter Dewitte Henry Van Onckelen Emilia Caboni 《Plant biosystems》2013,147(1):95-100
ABSTRACT The effects of macro- and micro-elements, benzyladenine (BA) concentration, and the period of auxin application on adventitious shoot formation from callus originating from vegetative shoot apices were tested on apple (Malus domestica Borkh) rootstock Jork 9. The putative relationship between organogenic response and cytokinin localisation was also studied by an immunolocalisation technique for in situ determination of free cytokinins. The use of MS (Murashige & Skoog, 1962) salts in the medium instead of those of LP (Quoirin & Lepoivre, 1977) had a strong positive effect both on shoot formation rate and on the number of shoots produced. The highest organogenic response from callus was induced using 17.8 μM BA in the presence of 2.7 μM NAA and by maintaining the explants for 20 days in darkness, then transferring them to fresh auxin-free medium and to the light. The in situ localisation studies, performed using antibodies with a marked specificity against zeatin and isopentenyladenine, revealed changes in the localisation of free zeatin in the tissues during the shoot-forming process, in particular during the active cell division phase leading to callus formation, and in the initial phase of bud formation. Changes in zeatin distribution in the tissues of the vegetative shoot apex during shoot formation may indicate a role for this cytokinin free base in cell differentiation and organogenesis. 相似文献
12.
13.
Rémi Kahane Michel Rancillac Bernard Teyssendier de la Serve 《Plant Cell, Tissue and Organ Culture》1992,28(3):281-288
We succeeded in cultivating onion plants in vitro with a high potential for shoot regeneration. The apex must be destroyed or injured to obtain axillary buds. This capacity was restricted to the abaxial base of the youngest sheaths. It was shown necessary to restore plant individuality before further proliferation; this process constituted one cycle. For successive regeneration each cycle was composed of three steps: shoot proliferation in the presence of a cytokinin, shoot individualization and plant development in the absence of growth regulators. Effect of growth regulators on the physiological status of onion plants cultured in vitro is discussed.Abbreviations BA
6-benzyladenine
- NAA
naphthaleneacetic acid 相似文献
14.
An Arabidopsis mutant defective in UV-B light-mediated responses 总被引:2,自引:0,他引:2
15.
Branching is regulated by environmental signals including phytochrome B (phyB)-mediated responses to the ratio of red to far red light. While the mechanisms associated with phytochrome regulation of branching are beginning to be elucidated, there is little information regarding other light signals, including photosynthetic photon flux density (PPFD) and how it influences phytochrome-mediated responses. This study shows that Arabidopsis (Arabidopsis thaliana) branching is modified by both varying PPFD and phyB status and that significant interactions occur between these variables. While phyB deficiency decreased branching when the PPFD was low, the effect was suppressed by high PPFD and some branching aspects were actually promoted. Photosynthesis measurements showed that PPFD may influence branching in phyB-deficient plants at least partially through a specific signalling pathway rather than directly through energy effects on the shoot. The expression of various genes in unelongated buds of phyB-deficient and phyB-sufficient plants grown under high and low PPFD demonstrated potential roles for several hormones, including auxin, cytokinins and ABA, and also showed imperfect correlation between expression of the branching regulators BRC1 and BRC2 and bud fate. These results may implicate additional undiscovered bud autonomous mechanisms and/or components contributing to bud outgrowth regulation by environmental signals. 相似文献
16.
Iwai Ohbayashi Yuki Sakamoto Hitomi Kuwae Hiroyuki Kasahara Munetaka Sugiyama 《Plant Biotechnology》2022,39(1):43
In two-step culture systems for efficient shoot regeneration, explants are first cultured on auxin-rich callus-inducing medium (CIM), where cells are activated to proliferate and form calli containing root-apical meristem (RAM)-type stem cells and stem cell niche, and then cultured on cytokinin-rich shoot-inducing medium (SIM), where stem cells and stem cell niche of the shoot apical meristem (SAM) are established eventually leading to shoot regeneration. In the present study, we examined the effects of inhibitors of auxin biosynthesis and polar transport in the two-step shoot regeneration culture of Arabidopsis and found that, when they were applied during CIM culture, although callus growth was repressed, shoot regeneration in the subsequent SIM culture was significantly increased. The regeneration-stimulating effect of the auxin biosynthesis inhibitor was not linked with the reduction in the endogenous indole-3-acetic acid (IAA) level. Expression of the auxin-responsive reporter indicated that auxin response was more uniform and even stronger in the explants cultured on CIM with the inhibitors than in the control explants. These results suggested that the shoot regeneration competence of calli was enhanced somehow by the perturbation of the endogenous auxin dynamics, which we discuss in terms of the transformability between RAM and SAM stem cell niches. 相似文献
17.
E. L. Il’ina I. E. Dodueva N. M. Ivanova L. A. Lutova 《Russian Journal of Plant Physiology》2006,53(4):514-522
The higher plant tumors are convenient models for studying the genetic control mechanism of plant cell division. There are two types of tumors: induced by the pathogenic factor and genetically determined. The development of both tumor types was related to the changes in cytokinin metabolism and/or signal transduction. In this work, the effect of synthetic cytokinins on the in vitro morphogenesis of cotyledon explants and isolated apices of radish seedlings was studied in several inbred radish lines (Raphanus sativus var. radicula Pers.) that differed in their in vivo tumorigenic properties. It was noted that root formation was stronger affected by kinetin while the treatment with thidiazuron tended to induce active callus formation in cotyledon explants of all inbred lines, except IIa. Growing with benzyladenine produced an intermediate effect as regards all morphogenetic responses. Cytokinin treatment of tumorigenic lines enhanced necrotic development in cotyledon explants. Culturing isolated apices of regenerated plants produced tumors anatomically and morphologically similar to those developing in vivo. Some of the lines nontumorigenic in vivo with enhanced formation of calli on cotyledon explants also developed tumors on apical explants in vitro when treated with cytokinins. These data suggest that different mechanisms for tumor formation operate in various radish lines. The radish lines are classified into three types: (1) necrotic lines with tumor formation putatively related to endogenous cytokinin level, (2) callus-forming lines with cell division enhanced in response to cytokinins, and (3) necrosis-and callus-forming lines with both mechanisms of tumor formation involved. 相似文献
18.
19.
Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion 总被引:6,自引:0,他引:6
In this paper we firstly show some general responses of biomass partitioning upon nitrogen deprivation. Secondly, these responses are explained in terms of allocation of carbon and nitrogen, photosynthesis and respiration, using a simulation model. Thirdly, we present a hypothesis for the regulation of biomass partitioning to shoots and roots.Shortly after nitrogen deprivation, the relative growth rate (RGR) of the roots generally increases and thereafter decreases, whereas that of the shoot decreases immediately. The increased RGR of the root and decreased RGR of the shoot shortly after a reduction in the nitrogen supply, cause the root weight ratio (root weight per unit plant weight) to increase rapidly.We showed previously that allocation of carbon and nitrogen to shoots and roots can satisfactorily be described as a function of the internal organic plant nitrogen concentration. Using these functions in a simulation model, we analyzed why the relative growth rate of the roots increases shortly after a reduction in nitrogen supply. The model predicts that upon nitrogen deprivation, the plant nitrogen concentration and the rate of photosynthesis per unit plant weight rapidly decrease, and the allocation of recently assimilated carbon and nitrogen to roots rapidly increases. Simulations show that the increased relative growth rate of the root upon nitrogen deprivation is explained by decreased use of carbon for root respiration, due to decreased carbon costs for nitrogen uptake. The stimulation of the relative growth rate of the root is further amplified by the increased allocation of carbon and nitrogen to roots. Using the simple relation between the plant nitrogen concentration and allocation, the model describes plant responses quite realistically.Based on information in the literature and on our own experiments we hypothesize that allocation of carbon is mediated by sucrose and cytokinins. We propose that nitrogen deprivation leads to a reduced cytokinin production, a decreased rate of cytokinin export from the roots to the shoot, and decreased cytokinin concentrations. A reduced cytokinin concentration in the shoot represses cell division in leaves, whereas a low cytokinin concentration in roots neutralizes the inhibitory effect of cytokinins on cell division. A reduced rate of cell division in the leaves leads to a reduced unloading of sucrose from the phloem into the expanding cells. Consequently, the sucrose concentration in the phloem nearby the expanding cells increases, leading to an increase in turgor pressure in the phloem nearby the leaf's division zone. In the roots, cell division continues and no accumulation of sugars occurs in dividing cells, leading to only marginal changes in osmotic potential and turgor pressure in the phloem nearby the root's cell division zone. These changes in turgor pressure in the phloem of roots and sink leaves affect the turgor pressure gradients between source leaf-sink leaf and source leaf-root in such a way that relatively more carbohydrates are exported to the roots. As a consequence RWR increases after nitrogen deprivation. This hypothesis also explains the strong relationship between allocation and the plant nitrogen status. 相似文献
20.
Caiping He Uday Tirlapur Mauro Cresti Mariana Peja Donna E. Crone Joseph P. Mascarenhas 《Sexual plant reproduction》1996,9(1):54-57
A male-sterile mutant, mei-1, of Arabidopsis thaliana is described. In this mutant, instead of a tetrad of four microspores being formed after meiosis, a tetrad consisting of from five to eight microspores is formed. The microspores show a wide range of sizes and of DNA contents. The mutant is female-fertile. This mutant was produced by seed transformation with Agrobacterium and appears to be T-DNA tagged. 相似文献